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Resumo 
Os avanços em tecnologias de sensoriamento, a expansão das técnicas de análise de dados e o 

aprimoramento dos algoritmos de aprendizagem de máquina permitiram o surgimento de novas 

estratégias de manutenção na aviação, com potencial para melhorar a disponibilidade das frotas 

concomitantemente a maiores reduções de custos. O problema que se impõe diante dessas novas 

abordagens é que a migração direta de tarefas preventivas programadas, previamente 

empacotadas em inspeções periódicas, para tarefas baseadas em predição pode resultar em um 

aumento do índice de indisponibilidade da frota. A integração otimizada da manutenção 

preditiva dentro do plano de manutenção geral cumpre papel fundamental neste cenário. As 

intervenções baseadas em predição buscam explorar ao máximo a vida útil dos equipamentos 

e, ao mesmo tempo, evitar riscos aumentados de incorrer em eventos de falha. Apesar dos 

avanços nas capacidades diagnósticas, a incerteza inerente a prognósticos representa um desafio 

substancial, que deve estar refletido em qualquer esforço de modelagem desse tipo de problema, 

especialmente quando as projeções se estendem por horizontes de tempo mais longos visando 

a permitir maior antecipação ao planejamento e preparação da operação e da manutenção. Uma 

grande parte dos estudos na área focam apenas no aumento da precisão das predições para um 

único componente. Outra parte significativa da literatura trabalha com monitoramento de 

condição para múltiplos componentes, mas restritos a um único vetor ou plataforma.  Outros 

estudos se restringem a usar estimativas de vida útil remanescente, sem considerar os níveis de 

confiança associados aos resultados apresentados. Esta tese propõe um modelo inovador, que 

integra dinamicamente as tarefas de manutenção preditiva e programada em uma estrutura 

única, com o objetivo de otimizar a disponibilidade da frota. O conceito inicial foi verificado e 

demonstrado por meio de exemplos exploratórios, que posteriormente foram expandidos para 

lidar com maior quantidade de aeronaves e componentes sujeito a menor número de premissas, 

com isso provendo maior robustez à validade da solução. O modelo resultante foi testado e 

validado por meio da implementação de um modelo de simulação híbrido, baseado em agentes 

e eventos discretos, criado com o software Anylogic©. Os resultados obtidos demonstraram o 

valor da contribuição deste estudo e confirmaram o potencial esperado para ganhos de 

disponibilidade, tendo apresentado uma redução estatisticamente consistente do tempo de 

indisponibilidade para os cenários analisados, centrados em um frota militar operando a partir 

de uma única base. A análise dos resultados também evidenciou as vantagens oferecidas pela 

integração da manutenção preditiva ao plano de manutenção tradicional. Ao final, as limitações 

do estudo foram reconhecidas e explicitadas à medida que as conclusões foram apresentadas.  
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Abstract 
 

Advances in sensor technologies, the expansion of data analytics techniques and the 

improvement of machine learning algorithms have enabled new aviation maintenance strategies 

with potential to further improve fleet availability while also reducing costs. The problem facing 

these new approaches is that the direct migration of scheduled tasks previously packed in 

periodic checks to prediction-based ones can result in increased total downtime for the fleet. 

The optimised integration of predictive maintenance with the overall maintenance plan plays a 

key role in this scenario. The forecast-based interventions seek the maximum exploitation of 

equipment’s useful life whereas avoiding incremented risks of running into failure. In spite of 

those enhanced diagnosis capabilities, the uncertainty inherent to predictions of future health 

states remains a substantial challenge that needs to be reflected in any modelling process, 

especially when projected over long enough horizons as to allow for better operations and 

maintenance planning and preparation. A significant number of studies in the field focus solely 

on increasing forecast accuracy for a single component. Another large portion of the literature 

deals with multi-components condition monitoring problems restricted to a single platform. 

Other studies consider only remaining useful life estimates without accounting for the levels of 

confidence associated with the results provided. This thesis proposes an innovative model that 

seamlessly integrates predictive and scheduled maintenance tasks in a single operational 

framework with the objective of optimizing overall fleet availability. The initial concept was 

demonstrated and verified by the means of exploratory examples, and then expanded to address 

larger numbers of aircraft and components with fewer assumptions granting more robustness to 

the solution. The ensuing model was tested, verified and validated with the implementation of 

a mixed agent-based and discrete-event simulation model created with Anylogic©. The results 

demonstrated this study’s contribution value and confirmed the expected potential to generate 

gains in availability, having displayed a statistically consistent reduction in total downtime for 

the case under analysis, which consists of a military fleet of fighter jets operating from a single 

base. Subsequentially, the results analysis clarified the advantages provided by the integration 

of predictive maintenance into traditional scheduled maintenance plans. At the end, the 

limitations of this study were acknowledged and highlighted as conclusions were drawn. The 

final comments point to potential further developments offered by his approach which led to 

recommendations for future studies. 
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1 Introduction 
A core aspect shared by recent technologies emerging in aviation is their ability to sense 

the surrounding environment, acquire the data to assess their functioning performance, and then 

generate, process and communicate the resulting information. Besides, ambient conditions, 

temperature, pressure, vibration readings, load, angle of deflection, flow rate, humidity, change 

rate of moving parts, like valves and actuators, are all examples of parameters that are now 

possible to be constantly monitored with a wide range of sampling rates due to digitalisation of 

aircraft operations and support (SCOTT; VERHAGEN; BIEBER; MARZOCCA, 2022).  

It comes with no surprise that those technologies mean higher production costs and 

result in more components embedded in the aircraft, which enhances the number of possible 

failures in the system as a whole. Therefore, in order to provide a return on this investment and 

make it profitable, it is necessary to exploit the opportunity it presents for streamlining 

maintenance by eliminating unnecessary tasks and removals while making the most of each 

monitored component’s useful life without running into failure and risking further damage and 

costs. 

In the literature, these technologies have been encapsulated under the terms IVHM 

(Integrated Vehicle Health Monitoring), or the more specific term for aviation AHM (Aircraft 

Health Monitoring), and PHM (Prognostics and Health Management) which together 

encompass the change in aviation maintenance strategy towards more proactive, precise, and 

effective approaches to planning (FRITZSCHE; GUPTA; LASCH, 2014). While IVHM refers 

to “an integrated vehicle level system deployed on a fleet of platforms” and may not include 

prognostics, “PHM is used where this predictive element exists” (SAE INTERNATIONAL, 

2019a). In other words, the diagnostics capabilities provided by IVHM resulted in a new 

engineering approach called PHM that not only “enables real-time health assessment of system 

under its actual operating conditions” but also predicts “its future state based on up-to-date 

information” (KIM; AN; CHOI, 201 7, p.1).  

The value added by the embedded IVHM technologies are bifold. On one hand there is 

a reliability and safety enhancement brought by onboard precise and timely diagnostics 

(IMRBPB, 2018), and the provision of enhanced guidance to the crew as to how to respond to 

an impeding or materialized failure event. The anticipation of a situation and/or the correct 

identification and prescription of how to deal with it are precious aids in critical scenarios. On 

the other hand, when there is the possibility of establishing a prognostics and the prediction 

timeframe is more elongated, there are implications to the support system which can be directly 
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translated into higher availability and less costs. Reasonably, IVHM have been regarded in the 

market as one of the few technologies that contributes to “reducing both maintenance and 

operational costs, while improving overall safety” (DIVAKARAN; SUBRAHMANYA; 

RAVIKUMAR, 2018). 

Inherent levels of uncertainty in the forecasts represent the greatest obstacle to the 

reliance on prognostics due to feared impact on the latter. This is a challenge that needs to be 

undertaken and overcome as a condition to make predictive maintenance a reality in aviation. 

This aspect is of key importance meaning that uncertainty must be measured and be present as 

a fundamental parameter in any model dealing with PHM.  

As a matter of fact, this issue is so widely present that most studies focused on solutions 

for long-term maintenance planning report severe difficulties in handling the onerous 

accumulated effect of uncertainty in reliability parameters and operational profiles projected 

over the planning horizon, thus limiting it. With effect, even most recent studies such as the one 

conducted by Hu, Miao, Zhang, Liu and Pan (2021) recommend strategies balancing short and 

long-term maintenance performance targets. 

In synthesis, the defence of a business case for justifying the investment in IVHM 

technologies, and hence PHM, depends on it being able to effect a positive impact on at least 

one of the RAMS (Reliability, Availability, Maintainability & Safety) factors, as defended by 

Pomfret, Jennions and Dibsdale (2011) and concurred by Sandborn (2013). The potential for 

worldwide cost savings is significant and is estimated to be “about $3 bn. per year”, which is 

coherent with the potential savings of EUR 700 million per year in the European aviation 

industry alone claimed by ReMAP (2022), when considering improved “maintenance 

operations and adjacent logistics processes” (GROENENBOOM, 2019 apud MEISSNER; 

RAHN; WICKE, 2021, p. 1), but it depends on how those technologies are exploited as 

explained next. 

The analysis of this new scenario where the aircraft counts with widespread smart 

components, and the investigation of how the current maintenance planning can accommodate 

and benefit from the new diagnostics and prognostics capabilities, showed that the direct 

application of predictive maintenance may not bring about the expected improvements, but 

actually increase downtime and jeopardize the overall maintenance planning of a fleet. 

In order to understand why the direct application of prediction-based tasks is a problem 

and its severity, it is first necessary to consider the dynamics of aviation maintenance. In an 

ideal world, maintenance would only take place when and if necessary. The perfect moment to 

act would be on the imminence of a failure event, or before the failure process start to jeopardize 
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the overall equipment’s health,  in such a way as to maximise the use of a component’s useful 

life without running into failure (LEE; DE PATER; BOEKWEIT; MITICI, 2022).  

This level of timeliness, meaning the precision on timing the intervention on the verge 

of its failure, depends on the continuous monitoring of indicative parameters, which historically 

has been very restricted, though successfully proven, to engine trend monitoring (or Engine 

Condition Monitoring – ECM) and a few other components that presented observable signs of 

wear such as oil dripping rate, or the thickness of brake disks as in the research done by Lee et 

al. (2022).  

Unfortunately though, a relatively large portion of aircraft parts have relied on periodical 

scheduled maintenance checks either based on calendar time or operational hours, and this 

current practice is pointed out by Divakaran et al. (2018) as a driver responsible for increasing 

maintenance costs steeply. Those events frequently include hard time preventive replacement 

tasks requiring the removal of a faultless working components from the aircraft, sometimes 

unnecessarily sacrificing relevant remaining portions of useful life.  

It is also important to remark that for a long time there was still another difficulty in 

keeping track of the operational performance of aeronautical items, which was the manual 

recording of occurrences and paper-based inspection reports. The low quality of data has been 

historically noted and criticized in the literature as pointed out by Dibsdale (2020). In this sense, 

IVHM technologies represent a new era for maintainability and reliability analysis 

improvement (DIBSDALE, 2020). On this thought, it is important to remark that the use of 

IVHM-based tasks has faced considerable resistance in the field of aviation maintenance due 

to its disruptive features and the change of culture it represents (RAJAMANI, 2020). 

Throughout the last decade, many scientific works have been carried out and published 

demonstrating the potential to reduce costs and improve safety offered by IVHM/AHM. This 

process has yielded credibility to this new approach, which then earned traction as an 

improvement embraced by defence forces and air companies worldwide and increasingly 

accredited by aviation authorities and also the MSG-3 board (SAE INTERNATIONAL (2022), 

IMRBPB (2018a)).  

In fact, it is expected that predictive maintenance will be incorporated as certified for 

maintenance credit, meaning “to gain approval for a Health Management application that adds 

to, replaces, or intervenes in previously accepted maintenance credits” (SAE, 2018, p.3), in the 

next edition of the ATA MSG-3 following the current one released in 2018, which is an 

amendment already advised by EASA IP 180 (IMRBPB, 2018).  
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The initial adoption of predictive maintenance yielding maintenance credits should be 

restricted to functional failures falling within failure effect categories 6, 7 and 9 (AIRLINES 

FOR AMERICA, 2015), those with non-safety consequences (MOUBRAY, 1999). Once the 

implementation is tested on the field, and in case the expected safety levels preservation or 

enhancement is confirmed, the use of IVHM/AHM and prognostics-based maintenance tasks 

can be extended to more critical failures with safety implications, namely those with failure 

effect categories 5 or 8. 

With regards to the effectiveness, a maintenance task will only be effective if the failure 

rate function, that is the conditional probability of failure, follows an age reliability pattern 

whose curve increases at some point in time, especially when there is a clear moment after 

which the failure rate picks up in pronounced “wear-out behaviour” as posed by Nowlan and 

Heap (1978, p.46). This effectiveness criterium was an important finding and was essential to 

the development, scaled operations and commercial success of the platforms such as the Boeing 

747-100.  

With effect, modern large carriers were benefited from a shift off the overhaul paradigm 

with the advent of the Maintenance Steering Group (MSG) in 1968, but it was only in 1978, 

with the development of the MSG-3 maintenance planning methodology, that unnecessary tasks 

were really eliminated and maintenance got leaner (O’CONNOR; KLEYNER, 2012).  

The MSG-3 approach (AIRLINES FOR AMERICA, 2015), also known as Reliability 

Centred Maintenance (RCM), has since become a worldwide standard in maintenance plan 

development. In its framework, it considers effectiveness as a requirement for a maintenance 

task creation, hence providing “a strong and well tested analytical logic which helps eliminate 

and minimize emotion from the decision making process of determining if a maintenance task 

is needed or not” (NAKATA, 2016). Nakata (2016) claims that conversion to MSG-3 can yield 

a reduction of up to 30% reduction in scheduled maintenance costs for an air carrier.  

In fact, one of the key aspects of this methodology is that a maintenance task should 

only be created if it is both applicable and effective. On top of that, unnecessary maintenance 

may as well increase failure rates since the intervention can induce failures as stated by Tan and 

Raghavan (2007) and corroborated by the example mentioned by Eliaz and Latanision (2007) 

who pointed out that maintenance was responsible for 16% of the failures presented by 

equipment in the Israel Air Force. 

However, due to a series of difficulties such as data immaturity or high uncertainty 

levels leading to excessive risk avoidance measures, ineffective maintenance tasks with 

premature replacements continue to be carried on by aircraft operators all over the world as 
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noted by Dibsdale (2020). At this point, it is important to emphasize that the maintenance 

planning document is first created during the aircraft development, when little operational data 

is available and the system failure patterns are fundamentally only partially known.  

The maintenance plan should therefore keep evolving with the fleet operation. In the 

past, the collection and analysis of statistically relevant failure data used to depend on each 

operator’s fleet size and on the availability of resources to conduct the process. This represented 

a strong limiting factor to the identification of opportunities for adjustment, and the ensuing 

proposal and approval of changes that could lead to updating the plan in compliance with the 

OEM and aviation authorities.  

Nowadays, this operational data-driven evolution has become easier once data 

collection is improved and many modern systems connect back to their OEM sending 

operational data automatically, which helps the manufacturers to get to know better their 

products behaviour on the field, thus improving their recommendations and thresholds based 

on actual reliability information.  

In face of all the facts presented so far, this work identified that the migration of tasks 

previously carried on within the scope of a periodical check to scattered prognostics-based 

moments results in increments to the overall fleet downtime due to the loss of the synergy 

generated by the traditional periodical maintenance tasks packaging.  

This problem of losing synergy and increasing downtime means that IVHM-based 

technologies might actually compromise some key logistics indicators, including operational 

availability, despite the potential advances and benefits that can be promoted by the abundance 

of accurate and timely data.  

Moreover, it is relevant to add that some corrective actions  previously executed in 

response to failures of non-monitored items, those with constant failure rates and exponentially 

distributed time between failures, called “condition monitoring” items in the old MSG 

terminology, are also expected to migrate to prognostics-based ones. In this case it is understood 

that there is no loss to the support level of service, but instead an enhancement in safety and a 

reduction of costs and downtime motivated by the change. 

The hypothesis raised in this thesis is that a method for integrating predictive and 

preventive maintenance in a single dynamic and adaptative framework that optimally 

distributes flights or flight-hours amongst the fleet members minimizing total downtime is a 

solution capable of tackling the impact caused by the migration of scheduled tasks to condition-

based tasks on the fleet availability. In other words, the hypothesis is that if a method optimally 

assigns flights or flight-hours to fleet members in a way as to increase the overlay rate between 
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maintenance tasks, allowing them to be conducted simultaneously, than it will lead to downtime 

minimization. 

The rationale behind the proposed solution is to find the perfect trade-off balance  

between the following concurrent objectives: 

- Maximize the use of a condition monitored component’s useful life without 

increasing the risk of a condition monitored running into failure (condition and 

prognostics-based maintenance acting on the lower bound of the RUL confidence 

interval); 

- Maximize the overlay between predictive tasks and periodical checks (opportunistic 

maintenance planning). 

- Minimize the disruption effects caused by random time-dependent events such as 

non-monitored items failures. 

- Test the solution’s robustness against scenario variability within reasonable range.  

It is valid to remark that the three first objectives together are equivalent to, or can be 

expressed as minimizing the total maintenance downtime without increasing the risk of a 

condition monitored item running into failure. 

In order to test the posed hypothesis the optimization problem was modelled, 

mathematically formulated and then tested against varying conditions to verify its effectiveness 

and generalisation potential, and finally it was executed in parallel with a simulation model to 

check its robustness against time dependent circumstances. The simulation model was 

developed in order to validate the optimisation model, which carries the solution proposed and 

represents the core of this study, besides investigating how long the solution is expected to 

withhold when subjected to random failure events that may bring disruption to its planning. 

It is important to highlight that the literature review conducted by the author showed 

that this research targets a problem unexplored by related works and the novel method 

developed is an original contribution to knowledge, consisting in the first published work 

proposing to reduce downtime by dynamically allocating flight hours with a view to 

maximizing the overlaying of predictive and preventive maintenance tasks. 

In order to guarantee that the novelty of this study has been preserved until its publishing 

date, the Scopus data base was used to monitor correlated publications with alerts triggered 

whenever a new article came out matching the keywords related to this study. 

The main original contribution arising from this study is providing a framework where 

predictive maintenance can be optimally accommodated within a scheduled maintenance plan 
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with limited impact on the failure risk index thus generating the benefit of maximizing the use 

of components useful life while also minimizing the fleet’s total downtime.  

Furthermore, considering that the framework also allows for better planning of 

resources required for the maintenance interventions, and also for managing the risks of running 

into failure, another major contribution is the reduction in Direct Maintenance Costs (DMC) by 

making use of prognostics data.  

The originality of both contributions has been confirmed by the presentation of a 

seminal work that initiated this thesis and was presented at the European Prognostics and Health 

Management Conference in 2021 (Figueiredo-Pinto et al., 2021). In that opportunity, the work 

was presented and discussed with the academic community in the field, and the claims 

regarding its novelty were not disputed by any of the participants. 

The following chapters will delve into the depths of each concept, method, process and 

claim so far introduced. The thesis document as a whole has been arranged in a logical and fluid 

way forming a structure that reflects the creative process as well as abiding by the scientific 

method’s rigours: 

• Introduction: provides context and motivation to the study. States the problem, 

the hypothesis and the objectives set out by the author. Justifies the relevance 

and novelty of the research project. Lists the main contributions arising from the 

work conducted. 

• Literature Review: scours the publications on the topic. Explain the core 

concepts and discuss the state-of-the-art of science in the field. Provides support 

to the claims of novelty and originality of the contributions offered by this thesis.  

• Methodology: delineates the optimisation algorithm developing process, which 

comprises the kernel of this study. Explains the verification and validation 

processes, establishing the roles for the analytical and simulation models. 

Substantiates the results by guaranteeing the scientific method has been 

respected. 

• Results and Analysis: presents the results obtained and discusses their 

implications in terms of testing the hypothesis, and the extent to which the 



25 
 
 

research objectives have been met. Provides in-depth discussion of the model’s 

strengths and limitations.  

• Conclusion: consists in the recollection and interpretation of the main findings 

and achievements contrasted with the research objectives thus communicating 

the balance in support of the thesis conclusion. It wraps up the conducted work 

with the results obtained, states the contributions provided by this research and 

acknowledges the work’s limitations as well as indicates trails for future 

developments.  
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2 Literature Review 

2.1 Review Strategy 

The subject targeted by this research is trending upwards in recent years considering the 

annual numbers of publications. The revision of related works showed this increase in interest 

by researchers worldwide and some measures were taken to avoid falling behind with all new 

developments in this rapidly evolving topic. The Elsevier SCOPUS© database was used as the 

main tool to scan the most recent publications falling within the following very strict set of 

keywords: 
- IVHM or “Integrated Vehicle Health Management”; 

- PHM or “Prognostics and Health Management”; 

- Aviation or Aircraft or Aerospace or Aeronautic*; 

- Predictive Maintenance or “Condition-Based Maintenance”; 

As a consequence, the author has been able to cope with all the latest relevant 

publications written in English related to the research while it was being conducted thus 

guaranteeing up-to-date literature coverage. That is to say that the author is confident in stating 

that the novelty of the study has been preserved since the gap identified in the literature has not 

been filled other than by the papers emerging from this thesis.  

The survey returned 364 documents as summarized in Figure 1 which shows the 

evolution of research related to IVHM and PHM in aviation maintenance over the last 25 years 

with the first mention to prognostics and health management going back to Smith, Schroeder, 

Navarro and Haldeman (1997) who studied this capability for the Joint Strike Fighter 

(Lockheed Martin F-35 Lightning II).  

This way, it consists in a relatively new knowledge domain and there is clearly an 

upward trend established after 2015 reaching its peak in production in 2021, only rivalled by a 

spike in 2012. With reason, the review conducted by Scott et al. (2022) noted an increase in the 

number in publications of both original and review papers  reflecting the growing attention from 

the aviation community towards this topic. The authors mention a recent “surfeit of review 

papers as well as original research papers studying the various aspects of detection, diagnostics, 

prognostics and decision support” (SCOTT et al., 2022, p.2) and dedicated their efforts to 

conducting the first predictive maintenance review paper focused on military applications 

within the defence context. 
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Figure 1 – Literature research results (SCOPUS, 2022). 

Following that, the filter was narrowed down to the most recent works and a manual 

selection based on the abstracts was carried out picking those more relevant and, in particular, 

those better correlated to the IVHM/PHM integration with traditional scheduled maintenance 

planning. In this sense, the work conducted by Bousdekis, Magoutas, Apostolou and Mentzas 

(2015) was especially welcome for its comprehensive review of the state-of-the-art publications 

about proactive maintenance, and also the review by Scott et al. (2022) for the same reason 

however more for its particular focus on support and operations of fixed-wing defence aircraft.  

The next sections introduce important concepts that are found in the literature and used 

in this study. Once some of them may have different connotations, it is necessary to explicitly 

state the meaning adopted by the author considering the context in which they are deployed in 

the development of the model that represents the core of this thesis.  

2.2 Integrated Product Support 

The essence of any logistics support system lies in its integrative nature with crossfading 

intersections between its elements. It is formed by an amalgam of different support aspects that 

must be balanced and work in coordination to make it efficient and effective in delivering 

continuity to operations at an affordable cost. This is known in the literature as Integrated 

Product Support (IPS), formerly also called Integrated Logistics Support (ILS). This framework 

is composed by 12 elements, the IPS elements, a theory  extensively discussed in the 

international specification by ASD/AIA (2021) and Blanchard (2014).  

The doughnut chart portrayed in Figure 2 is an adaptation of the illustrations by the 

aforementioned works created with the aim of illustrating that design influence is at the core of 

this structure, being the central element from which supportability irradiates, and that data, or 

logistics information in the terminology by Blanchard (2014), and also encompasses technical 
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publications in this case, permeates and connects all other elements. The inner elements are 

those attached to resource investments subject to scarcity and the outer ones are dynamic 

elements that exert supportability power by making use of resources and data in the 

management, control and improvement of logistics operations such as maintenance, PHSTT 

(Packaging, Handling, Storage, Transportation and Testing) and training. 

 

Figure 2 – The IPS elements. 

It is interesting to note that materiel, money and data are the flowing entities in this 

framework. However, while money and materiel are consequences of decisions taken, data is 

the raw material required for good decision making. In this sense, data is the binding element 

of this structure connecting the other elements and enabling improvement.  

The importance of data is stamped in the vision and objectives of the IPS Specifications 

(ASD; AIA, 2021) where it declares the aim to improve data quality and enable secure data 

sharing and exchange through the life of products and services. 

As mentioned  before in this thesis, historically, the low quality of data collected from 

operations has been considered an issue hampering potential improvements that could result 

from a better understanding of the system’s performance in service (BLANCHARD, 2014). 

However, the advent of IVHM has made available high quality in abundance, with an accurate 

and timely flow that enables creating a health profile updated in real time (SAE 
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INTERNATIONAL, 2019b). With that, the IPS elements can indeed work fully integrated in a 

dynamic fashion evolving with and learning from operations. 

Considering that IVHM depends on sensing technologies installed onboard, this 

capability is completely aligned with the long sought objective of having de facto design for 

supportability by integrating support considerations into equipment design. Although it is 

possible to enable legacy platforms with condition monitoring system through retrofit for 

targeting specific issues, the vast majority of new aviation projects already have IVHM 

requirements included in their scope since the design phase as depicted by Figure 3.  

This embedment of IVHM functionalities within the DNA of a project is necessary 

because IVHM is not restricted to a self-contained subsystem monitoring the performance of 

others or a “federated, compartmentalized, isolated system that performs one main function” in 

the words by SAE (2021, p.6). It is rather a system of systems which resides within subsystems 

throughout the whole aircraft system with requirements unfolding all over the support network. 

SAE (2021, p.6) concurs affirming that IVHM is “often distributed across aircraft on-board, 

fleet, on-ground and up-to enterprise level, such that IVHM requirements can be found 

throughout all aircraft systems (and ground support systems)”. 

 

Figure 3 – IVHM requirements in the product lifecycle. 

2.3 Performance Metrics 

The establishment of metrics for evaluating the IPS performance is important to enable 

control of the extent to which the quantitative and measurable supportability requirements are 

being met and to check the achievement of design goals (BLANCHARD, 2014). As the adage 

goes, it is only possible to manage something if you can measure it. Still according to Blanchard 

(2014), this approach is known as Performance Based Logistics (PBL) and has been intensively 
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applied in the defence sector for contracting out logistics support. The key aspect to be 

understood is that although different metrics can be related distinct logistics elements, the 

performance requirements must be set and met for the system as a whole. It is in the right 

composition of the many Technical Performance Measures (TPM) that lies the guarantee of an 

effective support.  

This thesis is concerned with improving the overall level of service delivered by the 

support system and operations management to a fleet. In order to do that, it makes use of metrics 

to assess whether the proposed solution is able to achieve the intended gains or not.  

These metrics generally have their roots in parameters within the famous RAMS 

(Reliability, Availability, Maintainability and Safety) factors which characterise the system 

(GALAR and KUMAR, 2016). Safety is preponderant in aviation and depends mostly on 

reliability and maintainability metrics.  

As a matter of fact, the reliability levels of aeronautical components have to meet 

minimum system requirements demanded by regulatory authorities which are initially checked 

in laboratory tests. Maintainability metrics gauge the level to which it is possible to cost-

effectively maintain the system abiding to those requirements throughout its lifetime 

(REGATTIERI; GIAZZI; GAMBERI; GAMBERINI, 2015).  

The in-service performance may differ from the expected and in case it falls below target 

there must be an action. This action may consist in the creation of a maintenance task, if 

applicable and effective, or require system reengineering to improve robustness sometimes 

ending up even with the replacement of the problematic item by an alternate better performing 

one. This is all part of the asset management whose ultimate goal is continuous improvement 

of system performance as defended by Galar and Kumar (2016). 

Availability is a high level systemic metric calculated as a function of Reliability and 

Maintainability, therefore availability is a dependent variable emerging from reliability and 

maintainability parameters.  

Using the terminology promoted by Blanchard et al. (1995), reliability deals with the 

uptime characteristics with parameters like: 

- MTBF (Mean Time Between Failures): only takes into account stops caused by failure 

events; 

- MTBUR (Mean Time Between Unscheduled Removals): a more embracing metric that 

accounts for all unscheduled component removals regardless to the motivation; 
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 - MTBUMA (Mean Time Between Unscheduled Maintenance Actions): similar to the 

previous, but considers all unscheduled maintenance interventions besides those involving 

removals; 

- MTBM (Mean Time Between Maintenance): an omnibus term that also includes 

preventive driven maintenance stops. 

Maintainability for its turn is “an inherent characteristic of system or product design” 

and refers to the achievable degree of ease, accuracy, safety and economy in the execution of 

maintenance actions propitiated by the design (BLANCHARD; VERMA; PETERSON, 1995). 

Maintainability is concerned with metrics of downtime, that is when the equipment is not 

operational, such as: 

- Maintenance Downtime (MDT): the total time the system spends in non-operational 

status motivated by maintenance related causes. It encapsulates: 

- Mean Corrective Maintenance Time (Mct) or Mean Time to Repair (MTTR): 

expected value of the probability distribution governing the time dedicated to 

troubleshooting and clearing an equipment’s failure; 

- Mean Preventive Maintenance Time (Mpt): expected value of the probability 

distribution related to the time spent on preventive actions.  It is divided into: 

- Mean Predictive Maintenance Time (Mpdt): portion of Mpt due to 

condition-based and predictive maintenance; 

- Mean Scheduled Maintenance Time (Msdt): part of Mpt associated with 

periodic inspections, checks and overhauls. 

- Maintenance Labour Hours/System Operating Hour (MLH/OPH): rate between the 

number of maintenance manhours spent per system’s operating hour. This is a good indicator 

of the effort required to keep the system working; 

- Turnaround Time (TAT): in aviation it can refer to the time necessary to recommit a 

landed aircraft back to take off for another flight. It may as well describe the time a repairable 

item spends in the maintenance pipeline, that is the time spent by an item in the circuit from 

when it is removed from the operational platform passing through the maintenance shop until 

it is made available back at the spares inventory shelves (BLANCHARD et al., 1995). 

Maintenance costs are also part of maintainability’s scope since the supportability of a 

system is significantly dependent on its affordability. On this matter it is imperative to remark 

that although in general terms the downtime metrics above are directly proportional to costs 

(REGATTIERI et al., 2015), i.e. the more manhours spent and the longer a system stays 

inoperative due to maintenance, the more expensive it becomes, the conversion depends on 
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various scenario-specific factors such as the support arrangement and wages policy, which will 

implicate transport, storage and inventory costs that can only be evaluated on a case-by-case 

analysis.  

In fact, this is a reflex of the integrated nature of support. In reason of that, any intended 

solution meant to reduce maintenance costs will require a bespoke treatment, not necessarily 

liable to generalisation. In here, it is worth disclaiming that this issue is the reason why the 

solution developed in this thesis does not make the leap to cost. It is a straightforward 

conversion, but it could only go as far as a case study, which is not meant at this time when the 

intention is to create a generalist application. 

Both concepts of reliability and maintainability are stochastic, with reliability focused 

on increasing the probability of an item staying operational for longer periods, while 

maintainability analysis seeks to reduce the expected time demanded to turnaround the asset 

and give it back to the operational line. 

2.4 Maintenance 

Maintenance is defined as conserving or restoring an equipment’s ability to perform its 

intended functions (BLANCHARD et al., 1995, KINNINSON (2004)). When the action is 

proactive and takes place before a failure takes place, the action is considered preventive 

maintenance and is associated to terms like overhaul, restore, inspection and rectification.  

When the action is reactive and takes place after failure event, it is called corrective 

maintenance and associated to terms such as repair, recovery and rectify (note that this is a more 

generic term used for both cases). Based on those definitions, condition-based and predictive 

maintenance interventions are considered subclasses of the preventive maintenance type. 

Ideally, maintenance should be endowed with timeliness and efficiency. Timeliness in 

the sense of intervening only when necessary, preferably right on the verge of a failure 

occurrence. Efficiency meaning that it should be effective in attaining recovery within the least 

possible time to return the equipment to operation, and at minimum cost. 

In reality though, due to regulatory restrictions or the inexistence of mature condition 

monitoring technology for some types of systems, aircraft safety still relies and will continue 

to be heavily dependent on periodical checks mostly designed during the aircraft development, 

where hard-time preventive maintenance tasks are grouped to be executed in batches.  

There is evidence in the literature pointing out that this gathering or packing of tasks is 

currently loosely performed to accommodate the different mandatory requirements within the 

aircraft maintenance schedule thus invariably shortening the intervals to avoid hazardous or 
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catastrophic consequences. In this sense, IVHM/AHM, as an end-to-end application, offers the 

possibility of not only better adjusting those intervals, but in some cases it can even support the 

replacement of a periodical scheduled task requirement (IMRBPB, 2018). 

It is known that risk avoidance feeds on the lack of information, thus traditional 

preventive maintenance intervals, defined mainly before the system’s entry-into-service, can be 

rather conservative and are expected to go through an optimisation process as operations 

progress according to Gonçalves and Trabasso (2018).  

Hence, it becomes clear how the modern condition monitoring and prognostics 

technologies come to maintenance’s aid in the quest for its goals. On one hand, it allows for a 

maximization of equipment usage by estimating and continuously updating its RUL as the 

operation progresses.  

This prediction also helps to prevent further damage that could arise from dependant 

failures triggered by the unwanted event, although it is necessary to acknowledge and remark 

that a residual risk of failing before the expected time remains. On the other hand, with long 

enough anticipation notice of impending failures, maintenance can prepare and pre-allocate the 

necessary resources to perform the intervention faster (TAN; RAGHAVAN, 2007). 

Complex systems demand through life support, making maintenance a significant cost 

in the asset’s lifecycle. In result, supportability requirements have been developed and are 

increasingly being incorporated into system’s design. The arise of IVHM technologies is a clear 

evidence of this issue’s relevance since it is concerned with improving support by continuously 

monitoring components (DIVAKARAN et al., 2018), thus allowing for better understanding of 

system’s actual operational behaviour, resulting in more accurate reliability analysis and higher 

maintainability due to anticipated triggering of maintenance, supply and operations workflows. 

It supervenes to remark at this point that a central attribute of this research consists in 

studying maintenance as an integrated collection of corrective, scheduled, condition-based and 

prediction-based interventions seeking to keep or restore the designed functions of a system. 

This is in line with the recommendation by the Society of Automotive Engineers (SAE 

INTERNATIONAL, 2018b, p. 7) which suggests that an effective fleetwide health 

management solution depends on the implementation of an efficient methodology “with the 

right mix of diagnostic, prognostic and scheduled maintenance approaches”.  

In agreement with this view, Wilmering  and  Ramesh (2005, p.1) establish that 

prognostics is only “part of an effective integrated Health Management solution”. In addition 

to those, the first type of maintenance that ever existed, the reactive or corrective actions mostly 

called repairs, must not be forgotten given that it continues to be demanded since it stems 
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directly from the inherent randomness of the physical world, sometimes rendering scheduled 

or periodical tasks ineffective. On the other hand, it must be perceived that it also arises from 

the quintessential element to any forecast, namely uncertainty, hence remaining able to surprise 

even the most advanced monitoring and prognostics systems. 

It is necessary to register that the scanning of literature indicated that the majority of 

references on the correlated subjects are concerned with technical and very specific models 

seeking to process the different signals provided by electronic sensors of various different 

components in order to extract useful and reliable information to support diagnostics and 

prognostics conclusions (BAEK, 2007; ELIAZ; LATANISION, 2007; LV; ZHANG; 

JIAYANG, 2015; SUDOLSKY, 2007) or creating methods to improve prediction accuracy as 

in the work by Yang, Wang, Cai and Li (2023). The issues involved in raw data processing are 

not considered in this thesis since the model hereby proposed operates in a higher level and 

considers the condition-based forecasts as inputs to P-F curves. 

At this point, in order to set expectations accordingly, it is important to position this 

research in terms of its level of application in the maintenance information flow. Taking as a 

reference the standard specification called Open System Architecture for Condition-Based 

Maintenance (OSA-CBM), largely adopted in the industry and especially promoted through the 

design principles of the international standard number 13374 (ISO, 2003) and as a functional 

model by the Society of Automotive Engineers (SAE INTERNATIONAL, 2018b), this study 

is concentrated on the so called Advisory Generation (AG) and Prognostics Assessment (PA) 

functional blocks or levels.  

Before moving on, it is also important to highlight that some authors in the literature 

such as the North American Department of Defense (DoD, 2020) make a distinction between 

the terms CBM (Condition-Based Maintenance) and predictive maintenance or CBM+ (CBM 

with prognostics) whereas another part of the references, for instance Tan and Raghavan (2007), 

associates CBM with prediction based actions.  

On this text, CBM refers both to current health assessment or diagnostics, and also to 

prognostics, or future health states, hence being interchangeable with CBM+.  

Considering the description provided by Figure 4, it becomes apparent that the present 

study expands the deployment of processed high level information provided by CBM systems 

onto the operations and maintenance management, closing the gap pointed by Li, Verhagen and 

Curran (2020, p.3) who stated that OSA-CBM architecture “lacks connection with the higher-

level methodology and framework” and also “lacks to provide detailed application case of 
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integrating aviation health management systems into supporting infrastructure for aircraft 

maintenance”.  

Figure 4 – OSA-CBM/IVHM functional blocks (adapted from SAE International (2018b)). 

In light of the above, this study acknowledges the value and complexity of all processes 

involving health data collection, treatment and analysis which take place at the predecessor 

functional blocks and will use their product as an input to the proposed model. The quality and 

accuracy of each one of the diagnostics and prediction methods will be reflected in the 

confidence levels embodied by this methodology as explained in the next chapter.  

The objective herewith is to investigate possibilities to enhance decision making related 

to assigning flight-hours or missions to fleet members in the best possible way as to minimize 

total downtime. In other words, the approach adopted by this endeavour consists in analysing 

prognostics data and suggesting optimal lines of actions for the fleet manager based on that. 

It is interesting to notice that despite the reiterated use of the acronym IVHM due to its 

prominence in the literature, being the original concept created by the north American National 

Space Agency (NASA), this thesis actually expands the concept to an aviation scenario where 

the term Integrated Fleet Health Management (IFHM) would more appropriate as it was also 

defended by Dibsdale (2020) for these cases. Some authors, for instance Feather, Goebel, and 

Daigle (2010) use yet a third acronym, namely Integrated Systems Health Management 

(ISHM). 

TRANSFER 
ACQUIRE 

STORE 

• State Detection (SD): provides normal or abnormal indicators based on 
eventual anomalies detected by comparison between current conditions and 
normal operating profiles. 

• Data Manipulation (DM): processes and transforms the gathered data. 
• Data Acquisition (DA): collects and stores sensor data and health state 

i f ti  

ANALYSE 

• Prognostics Assessment (PA): Provides estimates of future states of health 
and expected values of remaining useful lives. 

• Health Assessment (HA): provides information to evaluate and determine 
the current equipment's health status. 

 

ACT 

• Advisory Generation (AG): provides actionable information to operations, 
maintenance and external systems. 
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2.5 The Failure Mechanism 

In this text the terms failure and functional failure are used interchangeably always 

referring to the loss of a system’s function, that is when a piece of equipment ceases to deliver 

an expected function judging by predefined or standard operational requirements. Complex 

systems perform multiple functions simultaneously, so that it follows failures may affect 

partially or totally a system’s capacity to operate depending on its design properties and the 

type and number of failure modes, i.e. events causing functional failures, occurred 

(MOUBRAY (1999), DIBSDALE (2020). In this sense, for the sake of this study whenever the 

term failure is mentioned it refers to the state of inoperability that characterises a faulty item, 

or equally the total loss of function. 

The P-F curves, which were already present in the work by Moubray (1999) and 

continue to get traction, are a central concept in the condition monitoring and failure prognostics 

theory, reason why it is the point from which the modelling process takes off in the next chapter. 

They are used for estimating the Remaining Useful Life (RUL) of an equipment, or Prognostics 

Horizon (PH) as named by Julka, Thirunavukkarasu, Lendermann, Gan, Schirrmann, Fromm 

and Wong (2011). RUL is defined by Si, Wang, Hu and Zhou (2011, p.1) as a random variable 

representing “the useful life left on an asset at a particular time of operation”.  

It may also be referred to in the literature as Time to Fail Assessment (TTF) or 

Performance Life Remaining (PLR) and its precision relies on “understanding the component 

age, usage conditions, identification of the incipient failure and its severity, rate of degradation, 

and predicted usage” (SAE INTERNATIONAL, 2018b).  

It is valid to note that the same publication classified it as “probably the highest value 

element of a predictive health management program” and also “the most difficult to achieve”, 

what is also supported by the review of RUL estimating models by Si et. al. (2011), where it is 

noted that RUL estimation impacts on operational performance and costs. This is a central 

concept which is largely exploited in this thesis because it is critically important to several IPS 

elements such as maintenance and spare parts provision (supply support) and also fundamental 

to prognostics and health management. 

The P-F curve and RUL concepts are intimately related because while the former defines 

a trend curve from the current condition, or a point where a failure process begins or becomes 

detectable (the potential failure point “P”), to the estimated/projected point when a failure is 

expected to take place (the functional failure point “F”) (BOUSDEKIS et al. (2015); 

MOUBRAY (1999)), the latter is the expected value of the delta in time between “P” and “F”. 
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It should be noted that both points are dynamic and are expected to move as time passes and 

the operation progresses.  

The basic health degradation behaviour that results in a RUL estimate and the associated 

levels of uncertainty, which are directly proportional to the forecast degree of anticipation as 

pointed out by Lee et al. (2022), is illustrated in Figure 5. In other words, the further in time the 

failure prediction point is estimated, the lower is the precision of the forecast, therefore the 

larger is the confidence interval. This shows how dynamic the situation is given that even the 

confidence intervals change as the operation develops, which requires constant adjustment to 

planning. 

 

Figure 5 – Remaining Useful Life (RUL) estimation. 

It is worth clarifying that although many authors are keen on the definition of the 

potential failure point “P”, which marks the first noticeable signs that a failure process is in 

course, nowadays there are intricate model-based projection algorithms that are used to predict 

failure irrespective of detecting the start of a failure process based on health data analysis 

(PETRILLO; PICARIELLO; SANTINI; SCARCIELLO; SPERLÍ, 2020). 

At this stage, it is valid to point out that P-F curves are dynamic and their forecasts 

change ongoing with the operation. They depend on the correct functioning of the sensors 

enabling smart components in modern aircraft. This holds true regardless to the method issuing 

the prognostics being model-based or data-driven. Even though the former “relies on 

stochastically modelling the system degradation evolution” as explained by Nguyen and 

Medjaher (2019, p. 251), the periodic check of the actual health state on which the system finds 

itself as indicated by the sensors is key to adjust the theoretical prediction otherwise risking 

wrong maintenance decisions. 
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Following that, notwithstanding the fact that the increasing number of sensor offers an 

opportunity for streamlining maintenance by eliminating unnecessary tasks and removals, it 

must be cautioned that this lean maintenance may not be fully achieved yet due to the variability 

of approaches adopted. With effect, many items require reiterated inspections to adjust 

forecasts, meaning several maintenance interventions, while others can only predict a failure 

very close to its occurrence limiting the benefits provided by the prognostics with respect to 

proactively anticipating maintenance actions or avoiding the failure occurrence.  

If the condition-monitored equipment demands periodical inspections for performing 

prediction adjustments, then the more sensor-enabled items, the more interventions there will 

be. The frequency of intervention per se is not a problem if those interventions can be grouped 

into packages, practice known as opportunistic maintenance according to Lee et al. (2022). In 

this case a single stop would update several estimations and also serve to opportunistically 

perform neighbouring predicted or scheduled tasks. 

Nevertheless, it must be recognised that the initial indication that a failure process is in 

progress may come up at different stages of the component’s lifecycle with the initial RUL 

expected value, or PH, or even prognostics distance (PD), varying from minutes to several 

hours. It depends on the degradation pattern which can be anything from a smooth descent to a 

sharp decline (JENNIONS, 2013).  

If the failure process is too fast or if its detection can only occur when PD is already too 

short, the advantage provided by the prognostics anticipation is limited to an immediate 

operational repercussion (DIBSDALE, 2013), or, at most, it may give maintenance a head start 

to pre-allocate resources for the repair/replacement on the destiny where the aircraft will land 

when datalink services such as ACARS (Aircraft Communications, Addressing and Reporting 

System) are available. For the purpose of the maintenance planning methodology proposed on 

this thesis though, only prognostics distances greater than the flight duration are worth 

considering since it requires enough time flexibility for adjusting the flights or flight-hours 

assignment in a way as to cause the RUL forecasts to move and overlay with other tasks. In 

other  words, if the failure process is shorter than the flight duration it will not have an 

implication for the method herein developed. 

On that basis and according to Peppard (2010), predictive maintenance is only possible 

if the degradation pattern displayed in the P-F curve is reasonably consistent, i.e., it roughly 

follows a certain gradient profile for a given part type in every cycle of its operational life.  
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In addition, not only the decay speed and profile have to be consistent, but it is also 

important that the curves are sufficiently well-behaved to present a reasonably low dispersion 

in terms of the uncertainty range around the failure expected time.  

This smooth behaviour is not guaranteed though, given that components are subject to 

multiple dependent competing failure processes which can result not only from internal 

degradation, but also from random shocks or sharp load variations as examined by Wu, Wei, 

Zhang and Bai (2023). 

With a view to clarifying the ways in which failures are treated in this thesis, a definition 

of the failure mechanism is in due order. In reliability analysis (MOUBRAY (1999); 

DIBSDALE (2020)), the general failure process is well explained. It is important to understand 

that from design, the engineering of any component admits the possibility of failure. It is 

realistic to affirm that production or manufacturing processes are not perfect, indeed inherent 

reliability does not reach a hundred percent, and bear some variability which Kinninson (2004) 

impute to entropy.  

It means that the items composing every approved production batch present resistance, 

strength, or level of perfection as called by Kinninson (2004), varying within a predefined 

tolerable range which can be directly traced to health indexes.  The outgoing tests performed 

by quality control usually submit the product to stress with the aim of identifying and rejecting 

items that fail to meet the minimum standards.  

Allied to the stochasticity driven by quality of manufacturing processes, the load to 

which each product will be subjected also varies according to environmental and operational 

changes. The curves on Figure 6, adapted from the work by O’Connor and Kleyner (2012) 

exemplify an initial situation where the weakest of serial products still presents enough strength, 

or resistance to withstand even the upper side of the load curve.  

The orange curve represents the probability density function of the instantaneous stress 

load random variable to which a component is subjected. Nowlan and Heap (1978) exemplify 

this with the variation in atmospheric turbulence exerting different load levels on the aircraft 

structure. On the other hand, the blue curve demonstrates the probability density function of the 

level of resistance to failure offered by the component. The variability occurs because the 

production process of manufactured items involves tolerance limits within which range the 

product is accepted, as also posed by Nowlan and Heap (1978). With time and operation, the 

accumulated action of environmental factors and the stress load to which the item has been 

subjected throughout its life, this resistance to failure declines and wears out to a point in which 

eventually it is not sufficient to withstand the load and the functional failure occurs. 
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Figure 6 – The mechanism of failure – resistance (or strength versus load variation). 

In other words, as the items age or wear out with time and operations, resistance tends 

to decay giving in to entropy (KINNINSON, 2004) and at some point the curves start to overlay, 

increasing the failure rate. This process can so also be subject to non-linear behaviour due to 

load shocks (WU et al., 2023) which is expected to be captured by anomaly detection 

algorithms. In this case there might be intermittent symptoms which make diagnosis 

significantly harder. 

In this interim, it is also important to notice that in aviation there are several layers, or 

echelons of maintenance planning according to the respective level of intervention they refer 

to. There are simple tasks which happen on a daily basis and do not demand complex 

procedures, therefore they can be planned and rapidly processed on the ramp or after the aircraft 

finish their flight schedule. 

There are other checks which demand several weeks planning due to the complexity of 

the tasks and the need of special manpower, equipment and spare parts. In this sense, predictive 

maintenance can help on this quest, but its potential may be significantly reduced if the 

uncertainty involved prevents it from being used for long-term planning.  

2.6 The Role of Uncertainty 

Notwithstanding the improvements in the precision of forecasts, prognostics are in their 

essence predicated on stochastic models and therefore will always bear a certain degree or 

margin of error embedded in the forecast (FERREIRO; ARNAIZ; SIERRA; IRIGOIEN, 2012; 

SINGH; SINGH; SRIVASTAVA, 2016).  

Corroborating this idea, Zaitseva, Levashenko and Rabcan (2023, p.1) establish that any 

mathematical model, as an approximation of system behaviour, embeds uncertainty. The 
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authors separate uncertainty into two categories: aleatory uncertainty – caused by the random 

nature of the studied phenomena, and epistemic uncertainty – caused by incomplete, 

ambiguous, vague or incorrect information about the phenomena and overall “lack of 

knowledge about the system behaviour”.   

Following this definition, Grenyer, Dinmohammadi, Erkoyiuncu, Zhao and Roy (2020) 

defend that the knowledge provided by condition monitoring data, enhancing the 

representational capacity of the model, can help mitigating epistemic uncertainty, but the 

aleatory component of uncertainty “represents statistical variables that constantly fluctuate and 

therefore cannot be reduced”. Arguably, this reduction is actually possible with the advent of 

new equipment endowed with more precise measuring capability which aims exactly at 

reducing aleatory uncertainty. In that sense, it would be better stated that aleatory uncertainty  

can be reduced, but it cannot be eliminated. With reason, Zaitseva et al. (2023) and Yang et al. 

(2023) both concentrated their efforts in targeting sources of epistemic uncertainty.  

The aleatory component of uncertainty will remain present, unless the event is 

consummated, but rather than being ignored it must be assessed and reflected on every analysis 

in order to give the decision maker better situational awareness. Consequently, any technique 

or solution approach to problems involving this feature should be able to deal with probability 

and uncertainty. 

Kefalas, Stein, Baratchi, Apostolidis and Back (2022) corroborate this statement, while 

also pointing out that most studies unfortunately focus on point estimates in spite of considering 

confidence intervals, and explain that while epistemic uncertainty configures a reducible part 

of the total uncertainty in a modelling process, there will always be a portion of the aleatory 

parcel of uncertainty that is not liable to elimination. 

Unfortunately, a considerable portion of the approaches to predictive tasks 

programming found on the related studies focus solely on average values, disregarding the 

inherent risks to estimates and the importance of establishing reasonable confidence levels. 

However, since this is an intrinsic part of the problem, the author believes that the 

uncertainty ranges around RUL estimates shall be reflected in the model otherwise risking to 

compromise its validation, as defended by Ferreiro et al. (2012), Singh et al. (2016), Grenyer 

et al. (2020) and Adhikari and Buderath (2016). 

Likewise, it must be added that not only RUL is a random variable, but also the many 

reliability and maintainability metrics, as well as the high level system metrics such as 

availability and even supply metrics such as number of backorders and items in the pipeline are 

all random variables. 
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In the extensive theory long consolidated by the various works dedicated to steady-state 

scenarios, mean values are applied throughout the models and the deterministic results obtained 

are automatically regarded as valid and taken for their face value. This is the case, for instance, 

of the Multi-Echelon Technique for Recoverable Item Control (METRIC) propagated by 

Sherbrooke (2004) in his seminal work.  

With effect, when a phenomenon meets all the requirements of a Poisson process,  like 

the independency between events, over a long time the mean values are likely to hold and be 

verified recurrently in a way that the method turns out to be completely sensible and adequate 

to support decisions focused on the long term. 

Nevertheless, that is not to say the stochasticity is irrelevant or has been overcome. In 

fact, if the asset operations are not evenly distributed for example, the solution tend to lose 

effectiveness. That is because the mean values of variables on their own are not able to represent 

stochastic behaviour of their respective distributions, much less so for larger degrees of 

variance. 

Besides, when tactical decisions with shorter horizons are at hand, just knowing the 

expected number of failures over a predefined period is not sufficient given that the timing 

when the event happens is of key importance. 

This should be kept in mind and indeed be of academic concern because this is already 

a market demand and is reflected by the industry in the area, with software companies such as 

the Swedish Systecon AB, focused on providing decision support tools to logistics managers, 

commercializing a suite of three software to attend the customers’ needs. In their case, one 

program runs over a static deterministic model which considers only mean values as input, 

while the second is a simulation software where the initial solution is submitted to the scenario 

variability incorporated in the operations profile. The last software component is dedicated to 

costs and takes into account outputs from both the previous instances, therefore also bearing 

stochasticity. 

2.7 The Research Gap 

A recent publication by Shi Zu, Shiang and Feng (2020) scoured the literature and 

identified that most studies on CBM and prognostics are restricted to single items, trend which 

continues to hold true as shown by correlated studies such as the one performed by Lee et al. 

(2022) whose application focused solely on landing gear brake disks.  

Nonetheless, it is well known in logistics that only systemic optimization can deliver 

true value to the operator. Their review showed a general “lack of CBM models for multi-
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component systems”, in special those capable of leveraging the use of “multi-source dynamic 

information for effective inspection and maintenance planning”.  

Targeting this gap, they developed a method to minimize maintenance cost for a multi-

component system composed by k-out-of-n subsystems serially connected based on the use of 

dynamic information discretely updated upon periodical inspections.  

That notwithstanding the gap identified in that study remains uncovered since the 

proposed solution was restricted to cost optimization and the evaluation of one single platform, 

while in many cases complex systems are managed in fleets and downtime may also result in 

intangible (loss of brand value or credibility, customer satisfaction) and  indirect costs (loss of 

future revenue,  cost of opportunity etc). 

Even more recently, the work by Chen, Shi, Lu, Zhu and Jiang (2022, p. 79) stated that 

existing works in the literature fail to integrate the RUL prediction and maintenance decision-

making sides of a system’s PHM, but rather perform these “two tasks separately and 

hierarchically”.  

Reinforcing this argument, Lee et al. (2022) also noted that rare are the studies managing 

to integrate “prognostics into actual maintenance planning frameworks to prescribe RUL-

driven maintenance tasks”. In this interim, it is fair to mention that Nguyen and Medjaher (2019, 

p. 251) had already tried to fill this gap by presenting a “dynamic predictive maintenance 

framework based on sensor measurements”.  

Further on, the Chen et al. (2022)  also pointed out that the uncertainty inherent to 

forecasts “has not aroused wide concern and this may reduce the credibility of point prediction”. 

Those assertions are important to be made because they corroborate the claim that this thesis 

comprehensiveness is differentiated and novel. In fact, although the study by Chen et al. (2022) 

does tackle both sides of PHM and took uncertainty onboard, which is already an advance 

compared to most of the literature, it did not contemplate multi-component or multi-platform 

systems as proposed herein. 

In addition, the references surveyed often cited the need to translate IVHM capabilities 

into actual benefits by means of implementing changes to present courses of action, both in 

maintenance and operations decision-making processes, to justify the investment and open way 

for further IVHM progress (ESPERON-MIGUEZ; JOHN; JENNIONS, 2013; LI et al., 2020). 

In fact, this is a key aspect of the whole IVHM concept, but it has been facing hitches 

in becoming integrated to the maintenance plan because of regulatory restrictions and lack of 

an objective framework to conciliate the different needs and possibilities offered by all the data 
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being generated, processed, and transmitted with precision and in real time (HÖLZEL; 

SCHRÖDER; SCHILLING; GOLLNICK, 2012). 

Furthermore, it has been noticed a general concern about the cost effectiveness of 

making use of forecasts and letting maintenance act surgically on the imminence of each 

monitored component loss of function. On one hand, when the failure process import value loss 

or greater recovery costs, the benefits of postponing the maintenance action must be balanced 

against those extra costs. On the other hand, the benefit of maximum exploitation of useful life 

must also be weighed  against the dispersion of standalone condition-based interventions which 

could severely jeopardize operation by increasing total downtime as the proportion of predictive 

maintenance tasks increases. 

In this sense, the awareness brought by the health monitoring and prognosis equipment 

and algorithms offers advantages and new possibilities, but it also may render disadvantages 

and increase downtime. Based on that, it was understood that a model intending to make 

feasible the integration of predictive tasks in a maintenance strategy should address this issue 

and try to combine the occurrences in a way that cause them to coincide in time as much as 

possible. 

In face of that, and with a view to positioning this research amongst its pairs in the 

literature, a comparative analysis was drawn on Table 1 where it can be verified the uniqueness 

and originality of the present effort. The table comprises only those studies directly comparable 

for using either or both RUL estimates algorithms and maintenance decision-making 

techniques. 

Table 1 – State-of-the-art summary 

 Aspects covered in the study 
Study I II III IV V VI VII VIII 

Rodrigues (2018)   X X  X   
Nguyen and Medjaher (2019) X X X X X    

Deng et al. (2020)  X   X  X  
De Pater and Mitici (2021) X X X X X  X  

Shi et al. (2021) X X X X  X  X 
Chen et al. (2022) X X X X X   X 

Figueiredo-Pinto (2022) X X X X X X X X 
 

I. Corrective maintenance included in the model 
II. Scheduled maintenance included in the model 

III. Predictive Maintenance included in the model 
IV. Forecast algorithms contemplated  
V. Operations and maintenance optimisation – maintenance decision making 

VI. Multicomponent model 
VII. Multiplatform model 
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VIII. Uncertainty included in the model 

In special, it should be noted that the two main characteristics that differentiate this work 

from its closest pairs in the literature are represented by aspects VI and VII on the table above. 

The ability of the models hereby developed to tackle scenarios with multiple platforms, 

meaning more than one aircraft in our specific case, and multiple components within those 

platforms is unparalleled in the literature so far as this review is concerned. 

Thereby, in view of all the references consulted, it is clear the need for cost-effectively 

integrating predictive maintenance into a fleet preventive maintenance plan, and that means to 

conciliate estimated values of RUL, along with their inherent uncertainty, with time-based 

interventions. Also, it was verified that the technological means to support this approach are 

already in place and the precision levels of diagnostics, fault isolation and prognostics are 

rapidly improving.  

Nevertheless, a gap has been identified due to the absence in the literature of a solution 

designed to address this challenge, and it is with the aim of filling this gap that this study follows 

on to the next section where the methodology deployed is unravelled in detail.  
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3 Methodology 
This research methodology follows an inductive approach where the initial analytical 

optimisation model is deployed on a basic case and tested under a set of constraints and 

conditions, which are then gradually eliminated and subjected to varying conditions thus 

expanding the model and allowing the solution to be generalised. In other words, the 

methodology departs from a specific scenario and evolves in the direction of generalising the 

solution using more complex scenarios and incorporating statistical variability thus 

demonstrating whether its effectiveness holds true in face of different conditions and 

parameters. 

In a nutshell, the methodology is comprised by a dyad with the main part consisting of 

an analytical model which was initially verified and published, which was later improved and 

expanded, followed by a second part entailing a simulation model that runs in parallel with the 

optimisation algorithm in order to incorporate stochasticity and time dependencies with the aim 

of checking the validity and robustness of the primary results against a dynamic setting with 

statistically varying conditions.  

The flowchart portrayed in Figure 7 represents the modelling architecture on which the 

research procedures execution was based. 

 

Figure 7 – Methodology design flowchart. 
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As it can be seen on the upper thread of blocks, the methodology starts with the 

observation of reality in search of a phenomenon that is worth studying in depth and is liable to 

improvement. In doing so, the change in maintenance strategy towards the use of sensing data 

to increase timeliness, assertiveness and cost-effectiveness emerged as the theme.  

The investigation, as demonstrated in the previous chapter, raised questions regarding 

the possible loss of synergy caused by the substitution of scheduled periodical tasks for 

condition and prognostics-based ones and also identified a gap in the literature consisting of the 

missing link between data analytics and prognostics algorithms with the operations and 

maintenance management. Those questions led to the problem formulation where it is found 

that the missing link is essential to bring IVHM to fruition, otherwise risking its potential for 

value creation. 

Once the problem has been explicitly stated, the methodology raises an hypothesis with 

a potential solution to tackle the problem. In synthesis, the hypothesis raised by the study is that 

the operational hours distributed amongst the fleet members can be used as decision variables 

in an optimisation model seeking to minimize downtime, thus also increasing operational 

availability.  

With that in mind, the research objectives are then explicitly listed aligned with the 

scope delimitation. Naturally, the integrated support system of large-scale complex equipment 

has a myriad of parameters with intricated implications and ramifications so that it is only 

reasonable to set clear boundaries limiting the analysis to make the problem treatment feasible. 

Next, the research methodology deepens the literature review, which in reality had 

started even before the process beginning. In truth, it is obvious that the motivation driving the 

research proposal has its roots in two inseparable reality factors, namely the author’s working 

experience and the previous publications the author’s read as part of his job and professional 

education. At this point, there is a loop on the flowchart meaning that eventual findings in the 

literature have to be fed back to the departing point of the research process updating the 

assumptions and the overall background affecting the problem state and the following steps. 

Building upon all the information gathered, the research methodology proceeds to the 

creation of an adaptative and dynamic framework which was structured to integrate all relevant 

parameters in an arrangement sustained by the rules dictating their links and relationships 

translated by a mathematical expression as explained on the following section.  

The crucial question here resides in devising how the different maintenance parameters 

interact, for example, how the different RUL estimates and scheduled maintenance deadlines 
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can be disposed in a single formulation in the form of an objective function in order to create 

an optimisation model that maximises the crossover between them? 

At first, together with a series of input data such as RUL estimates, respective 

confidence intervals, maintenance times, components commonality of location within the 

aircraft and support features such as inventory levels, the framework is populated and inserted 

into a static optimisation model which then uses a non-exact method, which is necessary given 

the complexity of the problem, to try and maximize the overlay of maintenance tasks. 

In other words, this initial approach formulates the problem as an equation which 

calculates the total intersection between predictive and periodic checks for all components on 

each aircraft across the fleet. That is called a multi-component, multi-platform approach. 

Maximizing this function also translates as minimizing total downtime and may help to reduce 

maintenance costs given that tasks performed simultaneously save setup and active 

maintenance time and resources. This is the most creative part of the methodology and where 

the main contribution of this study resides. 

In order to verify and guarantee the originality and reasonability of this proposal, the 

basic model has been published (FIGUEIREDO-PINTO et al., 2021) and presented to the PHM 

Society in Europe and at the IVHM Technical Review at Cranfield University in the United 

Kingdom. It has therefore been published and the results have not been challenged nor have the 

novelty and originality claims been disputed.  

This feedback supported the continuation of the project with the expansion of the model 

formulation, especially incorporating corrective maintenance aspects for mitigating the failure 

risk index, and the creation of a hybrid simulation model where time-dependent parameters of 

the problem could be captured and their aspects and effects analysed against the indicative 

results obtained with basis on a steady state setting. 

It is important to notice that, at this stage, the research methodology expands 

significantly the solution’s robustness by eliminating some assumptions, thus widening the 

scope and incorporating time-dependent characteristics hence adding the stochasticity involved 

in the scenario onto the solution. This step is indeed accomplished by an enhanced problem 

formulation and the use of a connected simulation model running with basis on the optimal 

solution provided by the analytical model. On this matter, it is important to clarify that both 

models, analytical and simulation, are inseparable parts of the methodology developed in this 

study.  

With that, it can be stated that the proposed solution is able to provide coverage to all 

types of maintenance intervention (predictive, scheduled and corrective), and is also tested 
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against time-dependent aspects and nuances using simulation, unveiling aspects that could not 

be captured by the analytical model on which the optimisation is based.  

The expanded formulation of the problem together with the integration between the 

analytical and simulation models provide a robust method for verifying and statistically 

validating the claimed gains delivered by the solution developed in terms of downtime 

reduction and also fleet maintenance management calibration of decision parameters such as 

the level of confidence required and the anticipation or delay allowed for each type intervention. 

Although both parts are tightly connected and mutually dependent, each model has its 

own very specific objectives. Whereas the optimisation model is responsible for providing the 

best possible distribution of operational hours to the fleet members, the simulation model is the 

only one capable of dealing with those aspects dependent on the moment when the events take 

place, in special the failure events.  

In this particular, it is important to remind that the occurrence of failures is a possibility 

both for non-monitored items, such as those with exponentially distributed reliability, and for 

IVHM-enabled items due to the remainder parts of the RUL probability density functions not 

covered by the confidence intervals.  

As a result, despite the proactive maintenance attempts to avoid them, failure events can 

still occur and hit the system at any moment. In face of that fact, and bearing in mind a downtime 

reduction solution based on the maximum coincidence of maintenance activities in time, the 

precise moment when a failure happens does matter once its impact on maintenance planning 

changes depending on the concurrent status of surrounding circumstances.  

Indeed, this is not just a matter of estimating the quantity of events during a predefined 

period, which is very useful for estimating stock levels as implemented in the OPUS10 © 

software by the Swedish company Systecon ©, but also of evaluating the various consequences 

of unexpected interruptions on each different situation (or iteration in the case of simulation 

results). The exact status of other variables when the fault happens makes a significant 

difference to decisions regarding possible synergies. Given the impossibility of pinpoint those 

occasions, the replication analysis provided by simulation becomes necessary.  

In more detail, it is also important to understand that the envisaged dyad mechanism 

that fulfils this methodology is based on the exchange of information between both parts as 

depicted in Figure 8. As explained before, the optimisation model is the core intelligence 

combining the relevant and applicable maintenance parameters signalled by the literature in a 

single formulation that allows for the statement of the problem as an operational research 

objective function that works as a proxy for fleet total downtime minimization.   
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Figure 8 – Integrated Solution Dyad Mechanism. 

After implementing, testing and adjusting the core mechanism, the methodology moves 

on to the verification and statistical validation processes. The verification consists of testing to 

demonstrate and certify  that the requirements set out in the modelling process have been 

correctly implemented in the solution. This is carried out by testing the models and checking if 

they are producing coherent results in such a way as to answer the question: have we built the 

models right? (SAE INTERNATIONAL, 2021). 

The validation on its turn entails the analysis to determine whether the requirements for 

a product, in our case the integrated solution, are correct and complete. This step in reality is 

only possible with real data, which could not be made available for this research at this point 

where the new Brazilian Air Force fleets are still very incipient in their operational lives. 

However, with the use of Monte Carlo simulation, i.e. reiterate generation of random numbers 

within a reasonably wide range, it is possible to vary extensively the input data creating 

significantly different random scenarios in order to perform a test of robustness which is a 

statistical indicative of validation success, thus answering the question: are we building the right 

models? (SAE INTERNATIONAL, 2021).  

Approaching the end of the process, the methodology conducts a hypothesis testing to 

verify whether the results both from the analytical and simulation models support the 

conclusion that employing the developed solution can effectively reduce downtime given a 

certain significance level or not. This is a fundamental step before proceeding any claim can be 

truly posed. 
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In any case, that is confirming or denying the hypothesis, the next step is to check out 

the extent to which the research objectives were met considering that those are the study’s true 

raison d’etre. This analysis leads then to the final discussions regarding the impact and findings 

of the study establishing the advances, original contributions and acknowledging the limitations 

stemming both from the scope delimitation and also from what the results themselves could not 

substantiate. 

With a view to enlighten the modelling process conducted in the backbone of this 

methodology, the following sections are dedicated to explaining the development of each model 

on a step-by-step basis. This way, the author understands that the modelling process itself is an 

original contribution and form part of the methodology, what leaves the next chapter fully 

focused on the presentation and discussion of results. 

3.1 Initial Optimisation Model Development 

The scientific approach employed to ensure a sound problem formulation and 

development of a viable solution algorithm started by identifying and selecting the parameters 

identified in the literature as the most relevant and influent to maintenance planning. 

Subsequently, the parameters were integrated in a dynamic framework structured on the logical 

rules governing the relationships among those parameters respecting some limitations and the 

assumptions adopted to limit the scope. After that, the modelling process is wrapped-up with a 

verification test using fictional data with an aim to prove its coherence and consistency, thus 

attaining the objective posed in this article. 

The problem is stated as the inefficiency in the use of the beneficial IVHM technologies 

and prognostics algorithms caused by the increasing migration of packaged time-based and 

repair tasks to sparsely distributed and isolated condition-based tasks, which may increase the 

total downtime of an air fleet. In face of that, it turns out that the full realisation of the potential 

advantages offered by IVHM and PHM requires yet the compatibilization between predictive 

and preventive (time-based) maintenance tasks in an integrated planning framework. Moreover, 

this compatibilization should also ideally account for corrective maintenance interventions. 

In order to integrate those maintenance approaches, it is important to establish that time-

based maintenance checks are considered fixed deadlines in the model, while predictive times 

to failure are taken as dynamic thresholds allowed to move as the operation progresses and the 

estimates are updated.  

In terms of scheduled maintenance, there are basically two possible categories in which 

a fleet might fall in depending on its intensity of use. That is because the time-based tasks like 
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those resulting from an MSG-3 analysis are usually constrained both in calendrical time and by 

operational parameters such as operating times, flight hours or cycles.  

Therefore, if the operation falls into the low utilization category, that means the aircraft 

maintenance packaging is designed according to calendrical deadlines, otherwise it will be 

programmed based on the operational aging. On this paper, the former category is adopted due 

to the authors’ experience showing this is quite a common case for military aircraft, in special 

fighter jets during peace times. It is worth mentioning that this is the case for many projects 

within the Brazilian Air Force. 

At this point, it is important to highlight that the scope of this analysis was tightly 

defined because the assumptions and simplifications adopted throughout the methodology are 

essential to help understand the modelling of the problem at hand, and this is an initial approach 

gradually expanded. 

The low utilisation premise notwithstanding, the model proposed should not be 

considered unable to handle the higher utilisation categories, which can be contemplated via 

elementary changes in the formulation. In synthesis, the time domain can be converted to any 

other unit given that all life parameters are transferred from its original aging tally to the same 

basis where comparison can be drawn. It is conceded that the effectiveness achieved by the 

model in terms of downtime reduction may vary depending on the governing parameter and the 

dynamics of age related parameters, but the method remains applicable to all cases. 

On with the model development, the framework construction departs from data provided 

in standard P-F curves as explained in the previous chapter. As shown by Figure 9, it is 

interesting to notice that in a complex system such as an aircraft there might be many (hundreds, 

if not thousands) different P-F curves relative to each sensor enabled component in the platform. 
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Figure 9 – Aircraft Components’ P-F Curves Representation. 

A sensitive aspect also represented in the figure above and that must be regarded when 

dealing with prognostics data is the uncertainty inherent to any forecast, which means that the 

expected failure point in time on its own is not of much worth, but should be regarded in 

conjunction with its variation boundaries for a certain confidence level defined in accordance 

with the user’s risk tolerance.  

The use of unilateral intervals, i.e. considering only the lower bound and leaving open 

the other end of the interval, is arguably more appropriate given that the risk of running into 

failure only exists before the confidence interval once the lower bound is set as the stop point. 

However, for the sake of calculating overlays between intervals, the bilateral option is adopted 

for measuring intersection between open-ended intervals would not be possible in some 

situations. Bearing that in mind, the level of confidence should be adjusted accordingly, e.g. a 

90% bilateral confidence interval represents in practice a 95% unilateral confidence interval 

and vice-versa.  

One issue standing out and already highlighted is that different items may follow 

different aging units like calendar time, flight cycles, flight hours, number of shots, power-up 

time etc. The solution to that is to perform a migration from the operational parameter axis 

(power-up hours, flight hours, flight cycles, mission specific fractional time, etc.) to a 

calendrical or continuous time axis, which can be done by using a utilization factor according 

to each component’s life counter.  

For simplicity, this utilization factor was considered to represent an even distribution of 

a certain quantity of operating parameter units over the scenario length. In this case, it is also 
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important to notice that this factor for the platform as a whole, i.e. the aircraft, must not 

overcome the low utilization threshold for obvious reasons. It is valid to note that assuming 

uniform distribution for the ageing parameter does not represent a limitation in the model since 

any other transfer function representing the operational profile, if known, may be applied to the 

conversion. 

In result, the estimated RUL, originally in operational hours or whatever other 

parameters, is converted into a new parameter RULC now expressed in continuous time as 

displayed in Figure 10. In this graph the scheduled maintenance time is fixed, but the items 

RULC can be moved by changing the aging intensity via the aircraft utilization factor.  

The conversion was modelled following a linear function, but other types of relationship 

could be applied within the model with no harm to the method or to its results.  In reality, many 

other factors can be taken into account such as the application factor, relative to the proportion 

of actual utilization of an item per flight hour on each type of flight, or the degree to which an 

item is demanded and therefore aged according to the mission profile to be performed. The 

application factor is used in the example used to test the expanded version of the model further 

down this text. 

 

Figure 10 – RUL in Continuous Time Domain (RULC). 

Still on the same illustration, it is possible to verify that the prognostics information can 

lead to the scattering of efforts over isolated singular tasks each requiring a setup and 

demobilization, rendering the direct application of condition-based optimal intervention time 

ineffective both in terms of availability and cost. 

The solution to this issue as hereby proposed is to maximize the alignment, crossover 

or coincidence of expected failure times accompanied of their respective confidence intervals 
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(henceforth called “moving intervals” in the model) amongst various items, and most 

importantly with the scheduled maintenance check. The latter is considered a better target in 

the model because a moving interval once merged onto the scheduled maintenance stop usually 

becomes diluted in the overall effort and its downtime can be completely absorbed within it. 

Another advantage is that usually for those checks a considerable amount of resources 

are made available and therefore are hard to move for they represent significant costs to the 

ownership and are planned considering long-term lifecycle implications (DENG et al., 2020). 

With this purpose in mind and considering that each aircraft pertaining to a fleet will 

have its own distinct set of P-F curves, the numbers of flight-hours, or operational hours (OPH) 

to be distributed and performed by each equipment over the scenario length are established as 

the decision variables of the model. The OPH are then used to calculate the utilization factors, 

thus being the sole responsible for changes in the RULC values. 

A fundamental constraint that helps the model to converge is related to the fact that a 

fleet is usually subject to a maximum operational effort in a specified period due to business 

and budgetary guidance. In other words, the sum of each aircraft executed OPH must not exceed 

the fleet assigned top effort, except for some acceptable pre-established margin, but should be 

as close to the limit as possible. Initially, the OPH appointed to each plane will be spread over 

its respective Time to Scheduled Maintenance (TSM) as can be seen in Figure 11. 

 

Figure 11 – Fleet Scheduled Maintenance Standard Diagonal Distribution.. 

Before proceeding to the problem formal statement and considering that models are 

simplified representations of reality, it is imperative to delimitate the context envisaged in the 

model creation.  
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The scenario consists of a fighter jet fleet that operates from the same base and returns 

to it after each mission. It means that the problem is restricted to optimising operations by 

aligning the expected time when maintenance events may happen without particular concern 

regarding the location where the necessary resources must be in place. Considering a network 

of operational bases is one of the possible future extensions to this inaugural version of the 

model. 

In addition, the scope of analysis must be delimited by elating the assumptions adopted 

and the scope delimitations imposed for the initial modelling effort: 

- For each aircraft, the model is restricted to the next scheduled maintenance stop 

(henceforth also referred to as inspection). It does not affect the model whether the next 

inspections of different aircraft are the of the same category (e.g. checks A or C) or not, but the 

key point here is that it does not see future programmed interventions beyond that.  

This is in line with Fritzsche et al. (2014, p. 78) who recommends that the planning 

horizon when using prognostics “should be long enough to take appropriate actions and short 

enough so that forecasts of future failures are reliable”. Indeed, the longer the projection, the 

higher the uncertainty and the lower the planning’s reliability. 

- The component’s location is not particularly considered for the purpose of optimizing 

the moving intervals overlay. However, time coincidental tasks involving items closely located 

in the same access area, for instance on the same bay in the aircraft, may offer higher advantage 

since it could reduce downtime, and to represent that and stimulate the model to favour this 

cases a matrix was inserted in the formulation. 

- There is no condition deterioration outside operational time. RUL is not diminished 

during idle operational periods, including maintenance stops. 

- The exchange of components between aircraft aiming to improve results, practice 

known in the industry as “robbing” or “cannibalization”, is not allowed. 

- The optimisation considers predictive maintenance tasks packaging for each aircraft 

in separate. The alignment of tasks on different aircraft does not contribute to downtime 

reduction. On the contrary, due to resource constraints, the staggering of tasks on different 

aircraft is considered of more interest and effectiveness towards that goal. The overlaying 

tactics of the proposed solution can be reversed for that matter, but this is out of scope in the 

present research. 

- Possible differences in duration between maintenance tasks were considered irrelevant, 

all tasks therefore take the same time to be executed. This parameter was not implemented in 

the initial framework although it will be implemented, tested and discussed on the expanded 
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model. Depending on the case, it is possible to further improve the model by loading a priority 

factor onto longer tasks. 

In face of all considerations and analysis above presented, it is postulated that the best 

possible result for combining predictive and scheduled maintenance packages is achieved by 

maximizing the level of superposition or overlaying in the time continuous domain of moving 

intervals (forecasts with their confidence range) between components and with the periodic 

inspection.    

Moreover, let us consider the following parameters to formulate the problem: 

• q = total number of aircraft. 
• n = number of items monitored. 
• AE = total flight-hours assigned to the fleet. 
• uk = utilization factor, restricted to LUL. 
• Lij =  co-location matrix indicating whether components are on the same access area, 

the cells values are proportional to the efficiency gain provided by performing the pair 
of tasks together. 

• si,j = supply availability (Boolean variable, 1 = yes, 0 = no). 
• LUL = maximum rate of use to remain in the Low Utilization class. 
• OPHk = operational hours assigned to aircraft ‘k’ (decision variable); 
• RULC = remaining useful life estimated value in continuous time; 
• RULCmax = RULC upper limit for a given confidence level; 
• RULCmin = RULC lower limit for a given confidence level; 
• TSMk = time until scheduled intervention for aircraft k; 
• PR = priority factor given by the modeller to coincidences with the scheduled 

maintenance over amongst items RULC; 
With that, arranging the parameters according to their specific roles and bearing in mind 

the aim of maximizing overlay, it results in the statement of Equation 1 as the objective function 

to be optimized: 

max𝐹𝐹(𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘) = ∑ ∑ ∑ ((𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) ∩ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚)) ∗𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑚𝑚=1

𝑞𝑞
𝑘𝑘=1

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘

𝑚𝑚𝑖𝑖𝑚𝑚�

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘

𝑚𝑚𝑖𝑖𝑚𝑚�
∗ (1 + 𝑳𝑳𝑚𝑚𝑗𝑗)(𝑠𝑠𝑚𝑚 ∗ 𝑠𝑠𝑗𝑗) + 𝑃𝑃𝑅𝑅 ∗ ∑ ∑ ((𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘) ∩ (𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 ≤𝑚𝑚

𝑚𝑚=1
𝑞𝑞
𝑘𝑘=1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚)) ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘

𝑚𝑚𝑖𝑖𝑚𝑚 ∗ (𝑠𝑠𝑚𝑚) ,∀𝑖𝑖 ≠ 𝑗𝑗   (1) 

For: 
 𝑘𝑘 = 1: 𝑞𝑞 

 𝑖𝑖, 𝑗𝑗 = 1:𝑛𝑛 
Where: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘
𝑢𝑢𝑘𝑘

= 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘
𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘

(𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘)�
    (2) 
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Subject to the following constraints: 

i. ∑ 𝑂𝑂𝑃𝑃𝑂𝑂𝑘𝑘
𝑞𝑞
𝑘𝑘=1 = 𝐴𝐴𝐴𝐴; 

ii. 𝑂𝑂𝑃𝑃𝑂𝑂𝑘𝑘  | 𝑢𝑢𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅,∀𝑘𝑘 = 1, … 𝑞𝑞; 

It is necessary to point out that the first summation in the equation is more sensitive for 

cases where degradation rates change with use intensity in different ways for different items. 

With regards to the second factor which focus on the overlay between predictive tasks 

and periodic checks, one could make the case that the higher the fraction of the moving interval 

(the confidence range regarding a RUL expected value) left before the inspection, the higher 

the risk that a failure might occur and demand for a reactive maintenance, which would mean 

a higher cost and have a negative impact over the aircraft availability.  

The equation already seeks to circumvent it, but it was identified that a third negative 

factor could be created representing a penalty function related to the aforementioned risk to 

reinforce aversion, especially for items to which failure comes with secondary undesirable 

effects. This third term is included in the expanded model and is discussed in more detail on 

the next section. Apart from this case, on all other types of overlay, the stop point when a 

maintenance intervention should be performed covering all intersecting tasks must be the lower 

bound of the most imminent demand regardless if the crossover is between predictive tasks or 

involve scheduled checks as illustrated in Figure 12. 

 

Figure 12 – Batched tasks stop point. 

Another aspect that was found desirable to include in the solution is the possibility of 

advancing predictive actions for those items eventually falling a little after the inspection. This 

would require a delimitation over how much of an item life could be abbreviated to the 

advantage of the combination aimed by the model.  
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In this case, the formula would confer a prize to any anticipation possible for the benefit 

obtained in terms of economy and opportunity but would also penalize proportionally the loss 

of a fraction of expected useful life. Once the level of anticipation is defined, the 

implementation in the formula is straightforward just by adding this fraction to the second term 

both in the AND function and on the difference between 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 on the numerator. 

This is considered an add-on which involves subjective aspects for a decision regarding the 

anticipation level chosen, which is tested in the simulation model. 

3.2 Expanded Model Development 

The objective function in the previous section calculates a proxy value that refers to the 

degree of intersection between different maintenance tasks. However, in order to make the 

formula results more palpable and also focus on the final target, a function was added 

programmatically to convert that value to the actual resulting downtime.  

With that, for every overlay where tasks are stacked to be performed simultaneously at 

the same stop, regardless of how many, the model considers the total time for that intervention 

as being the duration of the longest task in the batch, or the check duration if the overlay 

involves a periodical inspection. This is a reasonable argument considering the assumptions 

where resources are not considered a bottleneck and that tasks are independently carried on. 

With that, tasks can be performed in parallel without interfering negatively with each other. 

Where there is resource scarcity, tasks may have to be queued in which case simulation will be 

made necessary for the analysis.  

It is valid to point out that the stop point continues to be the lower confidence bound of 

the most imminent grouped task with a view to minimize the failure risk, although it may 

anticipate a little the stop time of some overlaying components. Considering that the confidence 

interval tends to shrink as the failure moment approaches and the forecast becomes more 

accurate, this possible loss of remaining useful life for some stacked tasks is considered 

neglectable. 

In result, the target becomes indeed minimizing total downtime, composed by the sum 

of all stops, instead of the maximization of the quantity representing the degree of overlay as 

we had before. The objective function thus reads: 

𝑚𝑚𝑖𝑖𝑛𝑛𝐹𝐹�𝑣𝑣𝑡𝑡,𝑘𝑘� = ∑ (𝑇𝑇𝑆𝑆𝑇𝑇𝑘𝑘 + 𝑃𝑃𝑆𝑆𝑇𝑇𝑘𝑘)𝑞𝑞
𝑘𝑘=1 + ∑ ∑ 𝐹𝐹𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚

𝑚𝑚=1
𝑞𝑞
𝑘𝑘=1  (3) 

Subject to: 

i. 𝑉𝑉𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∑ 𝑣𝑣𝑡𝑡,𝑘𝑘
𝑞𝑞
𝑘𝑘=𝑚𝑚 ≤ 𝑉𝑉𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝑡𝑡 = 1, …𝑇𝑇, 𝑣𝑣𝑡𝑡,𝑘𝑘 ∈ ℕ; 
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ii. 𝑂𝑂𝑃𝑃𝑂𝑂𝑘𝑘  | 𝑢𝑢𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅,∀𝑘𝑘 = 1, … 𝑞𝑞. 

iii. 𝑢𝑢𝑘𝑘 = 1
𝑇𝑇𝑅𝑅
∗ ∑ �𝑣𝑣𝑡𝑡,𝑘𝑘 ∗ 𝐹𝐹𝑆𝑆𝑢𝑢𝐹𝐹𝑡𝑡�,𝑇𝑇

𝑡𝑡=1 ∀𝑘𝑘 = 1, … 𝑞𝑞. 

Where: 

• q = total number of aircraft. 

• n = number of items monitored. 

• uk = utilization factor for aircraft “k” calculated by the ratio of resulting 

operating hours from the assigned flights by the scenario length, restricted to 

LUL. 

• FDurt = flight duration in hours of flight type “t’; 

• 𝑣𝑣𝑡𝑡,𝑘𝑘 = number of flights type “t” assigned to aircraft “k”; 

• 𝑉𝑉𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  = minimum number of flights type t that must be performed by the fleet; 

• 𝑉𝑉𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  = maximum number of flights type t allowed to be performed by the fleet; 

• 𝑇𝑇𝑆𝑆𝑇𝑇𝑘𝑘 = scheduled maintenance downtime for aircraft “k” related to periodical 

checks within the scenario length; 

• 𝑇𝑇𝑅𝑅 = scenario length in calendar hours; 

• 𝑃𝑃𝑆𝑆𝑇𝑇𝑘𝑘  = predictive maintenance downtime for aircraft “k” considering overlays; 

• 𝐹𝐹𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘 = failure risk index for component “i” in aircraft “k”, calculated for all 

components whose predictive task overlays with a scheduled check and has a 

segment of its confidence interval left before the check start time. This term is 

given by the expression : 

o 𝐹𝐹𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘 = (∫ 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚,𝑘𝑘(𝑡𝑡)𝑝𝑝𝑡𝑡𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑘𝑘

) ∗ 𝑅𝑅𝑇𝑇𝑆𝑆𝑢𝑢𝐹𝐹𝑚𝑚 ,∀𝑘𝑘 = 1, … 𝑞𝑞,∀𝑖𝑖 = 1, … 𝑛𝑛 

Where: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚,𝑘𝑘(𝑡𝑡) = RULC probability density function for component “i” 

in aircraft “k” in calendar hours; 

 RULCLi,k = time marking the lower bound of RULC confidence 

interval for component “i” in aircraft “k” in calendar hours; 

 TTCLk = time marking the start time of the periodic check for 

aircraft “k” in calendar hours; 

 𝑅𝑅𝑇𝑇𝑆𝑆𝑢𝑢𝐹𝐹𝑚𝑚   = corrective task duration for component “i”; 

As it can be seen above, the decision variables in the expanded model are the number 

of flights of each type assigned to each aircraft member of the fleet as opposed to the OPH as 

in the initial model. This new layer adds the capacity to represent different utilisation profiles 
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considering the aging parameters followed by different components and also according to 

environmental conditions. For instance, longer flights will degrade less the cycle-based 

components compared to shorter flight.  

Another example is the use of application factor (APPXi,k). This is a necessary 

parameter to represent cases of partial or severe use. For instance, depending on the mission to 

be performed some flights might require the use of night vision auxiliary equipment or a 

Synthetic Aperture Radar, while others don’t. The wear severity can also change depending on 

the flight performed, for instance propeller blades are expected to age faster when the aircraft 

operates on unpaved runways as opposed to tarmac. With that, this new layer acts as a step 

before converting all aging parameters to the time continuous domain and empowers the 

solution once it adds versatility and complexity to the model hence increasing the number of 

possible combinations to decide on. With that, the RULC calculation in the expanded model is 

given by Equation 4. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘
𝑢𝑢𝑘𝑘∗𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚,𝑘𝑘�   (4) 

Where: 

• RULi,k = remaining useful life estimated value for component “i” in aircraft 

“k”; 

• RULCi,k = RUL in continuous time for component “i” in aircraft “k”; 

• APPXi,k = application factor of component “i” in aircraft “k” calculated as an 

average application factor over the mix of flight type quantities assigned to 

“k”. 

The SDT is calculated multiplying the number of checks each aircraft has scheduled for 

the period covered by the scenario length by their correspondent durations. It is important to 

notice that this parcel is not optimisable in the model, but it is resultant from a fixed input from 

the overall maintenance diagonal schedule followed by the fleet. 

For its turn, PDT is calculated following a routine implemented according to the 

pseudocode bellow.  

/* import input data such as scenario length, number of aircraft, number of components, 

tasks and check durations, time to check for each aircraft, components RUL, number of 

flights required per type etc */ 

read input_data_file; 

/* defines the decision matrix with aircraft in columns and flight types in rows 
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V = matrix[T,q] 

/* calculates the resulting number of flight cycles (FC) and flight hours (FH) per 

aircraft and respective utilization factors*/  

for k=0, k<q, k++ 

 for t=0, t<T, t++ 

  FC[k]=FC[k]+V[t,k] 

  FH[k]=FH[k]+V[t,k]*FDur[t] 

 UTILFH[k]= FC[k]/SCLEN; 

 UTILFC[k]= FH[k]/SCLEN; 

/* calculates RULC and respective lower and upper bounds for each component on each 

aircraft also taking into account the average application factor APPX of each 

component per aircraft according to the mix of flight types assigned */  

 for k=0, k<q, k++ 

  for i=0,i<n,i++ 

   if OPH[i]==FH 

    RULC[i,k]=RUL[i,k]/UTILFH[k]*APPX[i,k] 

    RULCU[i,k]=RULU[i,k]/UTILFH[k]*APPX[i,k] 

    RULCL[i,k]=RULL[i,k]/UTILFH[k]*APPX[i,k] 

   else 

    RULC[i,k]=RUL[i,k]/UTILFC[k]*APPX[i,k] 

RULCU[i,k]=RULU[i,k]/UTILFC[k]*APPX[i,k] 

    RULCL[i,k]=RULL[i,k]/UTILFC[k]*APPX[i,k] 

*/ check if a component’s moving interval (RULCL-RULCU) overlays with the aircraft 

periodic check following the function in the basic model, if positive the predictive 

task downtime is absorbed within the check. Also, if there is a portion of the moving 

interval before the check start, calculate the failure risk associated */ 

 for k=0, k<q, k++ 

  for i=0, i<n, i++ 

  if overlay(Check(k),RULCInt(i,k))==True 

   downtime[i,k]=0; 

   if RULCL[i,k]<TTCL(k) */ given that there is an overlay, if the 

moving interval lower bound is smaller than the check start time, then the risk index 

must be calculated */ 

   pdf[i,k] = //expression for the probability density function i,k 



63 
 
 
   FRI[i,k] = Integrate(pdf[i,k],RULCL[i,k],TTCL[k])*CMDur[i] 

  else 

   downtime(k,i)=dt(k,i); 

*/next the overlay between components is verified and calculated as in the previous 

model*/ 

 for k=0,k<q,k++ 

  for i=0,i<n,i++ 

   for j=i+1,j<n,j++ 

    if overlay(RULCInt[k,i],RULCInt[k,j])==True 

   aggregate i,j in tuple; */group the components in a tuple to 

calculate the resulting downtime in the end*/ 

*/calculate the resulting PDT 

     for k=0,k<q,k++ 

     for i=0,i<n,i++ 

      if (i is in a tuple?) 

       if overlay(tuple,Check(k)==True) */if 

there is any component in the group overlaying with a check, the tasks in the tuple 

are absorbed within the check duration*/ 

        DT(tuple)=0; 

       else if (TDur(i)==Large(Tuple)) */on 

the contrary, the tuple duration is the duration of the component task with the 

longest duration*/ 

        PDT=PDT+DT(i) 

     else DT(i)=0; 

  else */in case the component is isolated, its downtime is added to 

total PDT*/ 

   PDT=PDT+DT(i) 

The basic idea builds on the initial model and includes the expected downtime due to 

expected corrective interventions, that is: 

i - overlaying predictive tasks are performed simultaneously and take as long as the 

longest task in the group; 
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ii - predictive tasks overlaying with the check are absorbed within the duration of the 

check; 

iii - due to the previous condition, any predictive task overlaying with scheduled check 

that has a segment of its confidence interval before the check start time implies a risk of failure 

proportional to the portion this segment represents of its total failure probability as exemplified 

in Figure 13. This quantity, which represents the probability part of risk, is then multiplied by 

the corrective maintenance task duration, which is normally longer than a preventive task for it 

requires more steps to be concluded thus representing the impact side of risk. Summing up all 

cases like that result in the number of expected failures arising from the assumed risk. In this 

interim, it is important to remark that failures falling outside confidence intervals and those 

alien to any preventive effort are not optimizable in the model, although they affect the 

simulation results and so their impact can be evaluated by the integrated method. 

 

Figure 13 – Failure Risk Index (FRI) illustration. 

In result, the model seeks to minimize the failure risk index associated with these cases 

where the task is delayed to be incorporated by the check and part of the moving interval is ran 

over. This way, the expanded model is able to minimize overall downtime handling predictive, 

scheduled and corrective maintenance altogether as shown by the results in the next chapter. 
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Also, in order to compare the results from utilizing the proxy objective function (overlay 

maximization) and the downtime minimization one, the initial model was augmented 

accordingly resulting in the formulation shown by Equation 5.  

max𝐹𝐹�𝑣𝑣𝑡𝑡,𝑘𝑘� = PdOverlay(𝑚𝑚,𝑗𝑗,𝑘𝑘) + pr1 ∗ ChOverlay(𝑚𝑚,𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑘𝑘,𝑘𝑘) − pr2 ∗ FRI(𝑚𝑚,𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑘𝑘,𝑘𝑘)  ,∀𝑖𝑖 ≠ 𝑗𝑗  (5) 

Where: 

𝑃𝑃𝑝𝑝𝑂𝑂𝑣𝑣𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃∗𝑚𝑚,𝑗𝑗,𝑘𝑘) = ���((𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) ∩ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑚𝑚=1

𝑞𝑞

𝑘𝑘=1

≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚)) ∗

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚�

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗,𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�

∗  (1 + 𝑅𝑅𝑚𝑚𝑗𝑗)(𝑠𝑠𝑚𝑚 ∗ 𝑠𝑠𝑗𝑗)(𝑇𝑇𝑆𝑆𝑢𝑢𝐹𝐹𝑚𝑚 + 𝑇𝑇𝑆𝑆𝑢𝑢𝐹𝐹𝑗𝑗) 

 

𝑅𝑅ℎ𝑂𝑂𝑣𝑣𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚,𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑘𝑘,𝑘𝑘) = ����𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘� ∩ �𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�� ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑠𝑠𝑚𝑚 ∗ 𝑇𝑇𝑆𝑆𝑢𝑢𝐹𝐹𝑚𝑚

𝑚𝑚

𝑚𝑚=1

𝑞𝑞

𝑘𝑘=1

 

 

𝐹𝐹𝑅𝑅𝑅𝑅(𝑚𝑚,𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑘𝑘,𝑘𝑘) = ����𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘� ∩ �𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚�� ∗
𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑚𝑚=1

𝑞𝑞

𝑘𝑘=1

 

As it can be seen above, the model now includes a third term aimed at reducing the risk 

of incurring into failures due to the postponement of tasks involved in overlays with periodical 

checks, as explained before. The terms highlighted in red refer to an attempt to enable the model 

to prioritize the overlay of tasks with longer duration for that can yield larger reductions in 

downtime. Considering that this addition to the formulation increased the algorithm processing 

time significantly, the cost-effectiveness of this enhancement will be assessed within the tests 

reported on the next chapter. 

3.3 Simulation Model Development 

Following the development and verification of the optimisation model as described in 

the previous section, a multi-method simulation model was developed using a software called 

Anylogic©. This resource was deployed as a mean to validate the proposed solution through 

the use of replication analysis. It should be noted that coupled with the correspondent 

hypothesis testing, this is a reasonable validation method when there is no real data available 

or accessible given that the process relies on the variability between each instance of simulation.  
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Additionally, as explained before, the simulation environment offers the possibility of 

building scenarios with a much better representation of reality and its nuances, what can’t be 

translated into a static mathematical model.  

According to Borschev and Grigoryev (2021), analytical models are adequate when the 

number of parameters is manageable, the system behaviour is linear and there are clear 

dependencies between the agents and variables.  

However, when there are too many parameters, non-linear influences, time and causal 

dependencies and counter-intuitive behaviour, then only simulation modelling can provide a 

reasonable method to test and validate the solution. The latter represents better the case at hand 

particularly because of time and causal dependencies which can also motivate emerging 

behaviours which might not be modelled at first, but result from the underlying designed rules 

of interaction between the agents.  

For instance, the advent of a failure may result in jeopardy to planning and flight-hours 

being carried over to the next optimisation period, or it can happen in a favourable moment 

when adjoining tasks may be opportunistically performed at the same time and end up resulting 

in less downtime. In other words, depending on the moment when the event is triggered, the 

outcome changes. This is not possible to implement in a static model. 

The simulation model developed falls onto the hybrid or multi-method category because 

it makes use of two different types of simulation namely Discrete Event Simulation (DES) and 

Agent-Based Simulation (ABS). A third type of simulation category available in the software 

is System Dynamics Simulation (SDS), but it was not used within the model at this stage. This 

integration of methods increase the possibilities and flexibility for developing the model and 

also enhances the solution’s uniqueness.  

3.3.1 Agent-Based Simulation 

The ABS approach is the adequate type of simulation when it is necessary to focus and 

programme the internal dynamics of an agent. Therefore it was used to represent the model 

agents’ behaviours and the possible states they can assume as the scenario evolves.  

The model built counts with many different agents such as the maintenance centre, push-

back tractors, the aircraft and auxiliary agents responsible for integrating the ABS and the DES 

parts of the simulation. The aircraft though is the central piece and the one with the most 

complex internal dynamics as described below.  

Each aircraft for example can assume seven different internal states as shown by Figure 

14 and transitions between them according to predefined rules, which are presented further 
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down this section. In addition, each aircraft carries within itself a set of parameters and variables 

that serves for interactions, condition monitoring and for statistical purposes as can be verified 

in Figure 15. 

 

Figure 14 – Aircraft agent internal behaviour and states (Anylogic©). 

 

Figure 15 – Aircraft agent parameters, variables and events (Anylogic ©). 
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The seven internal states that an aircraft can assume as depicted in Figure 14 are divided 

into two main umbrella categories: Operational and Unavailable. When there is no maintenance 

due to be carried out in an aircraft, the platform is considered Operational. Within this category, 

the aircraft can be on the ground, dispatchable, but waiting to depart according to the flight 

schedule. This state is called “Ready” in the model.  

Besides that, once it is called upon the schedule, the plane can also be in-flight, actively 

operating, state called “Flight” in the model.  

After each flight the aircraft passes through a post-flight check (“PostCheck” state) that 

verifies possible failure occurrences resulting from the flight and whether it needs repair or not.  

On this state, it also computes and updates all operational tallies in order to verify if there is 

any impeding preventive intervention that requires the aircraft to be sent to the maintenance 

centre. In case the answer is negative to all possible maintenance demands, the aircraft returns 

to the flight line. 

Although it moves back straight to the hot bay, the aircraft can still assume two different 

states at this point. Because of that, the model also verifies whether the aircraft remaining flight-

hours, considering the balance against the missions and flight-hours assigned to that specific 

tail number, is sufficient to fly another mission.  

If positive, the airplane then moves back to the “Ready” state. Otherwise it enters a state 

called “Wait FH” where it stays awaiting for the next round of optimisation run and a new set 

of operational hours, or it might inherit the surplus of non-performed flight-hours initially 

designated to other aircraft that suffered some kind of hinderance, such as a failure event, that 

prevented it from accomplishing its quote. 

On the other side, there are three possible primary causes for the equipment 

unavailability, each one represented by a different internal state within the “Unavailable” 

composite state.  

The prognostics system may have indicated an impeding failure based on a single or 

multiple components’ RUL forecast. In this case, the aircraft requires that component to be 

replaced, so its internal state transition to “Predictive” and a task is due to be performed by the 

maintenance centre technicians.  

At this point the model makes use of an auxiliary agent named “Maintenance Request” 

that is sent, along with the tail number requesting the service as a parameter, to the discrete-

event part of the simulation, hosted in the “Main” agent, specifically to the predictive 

maintenance circuit that is presented further ahead. Once the maintenance work is successfully 

completed the aircraft is made available and re-enters the Operational state. 
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Another possible cause is the proximity of the periodic check expiration date. In this 

situation the aircraft also needs to be brought into the maintenance centre and undergo the full 

package of scheduled tasks which is usually a longer stop compared to standalone out-of-phase 

interventions. In this case, the active internal state changes to “CheckA”.  

The auxiliary agent “Maintenance Request” is again demanded, but this time it enters 

the check circuit in the discrete-event part of the simulation model. After the check, the aircraft 

goes back to the flight line for it has recovered its operational condition. The balance of assigned 

flight-hours is also performed on this return. 

The third cause is the differential brought by simulation to the integrated solution, that 

is the occurrence of a failure event. This event can arise or be originated from a condition-

monitored item whose failure happened outside the adopted confidence interval, that is, before 

its lower bound. Clearly, it is impossible to guarantee prevention to all conceivable failure 

modes given that a 100% confidence is obviously economical and operationally unrealistic. 

Another possibility is that the failure stroke one of the non-monitored components. 

These failures usually follow a constant failure rate function, and the time between the events 

follows an exponential distribution as pointed out by Blanchard (2014), Elsayed (2012), 

O’Connor and Kleiner (2012) and Moubray (1999). In this case where periodical checks are 

not effective and condition-based is not possible, failures are unavoidable, therefore it is an 

expected situation and must be modelled in order to improve reality adherence. 

Irrespective of components having effective preventive tasks or not, reminiscent failures 

can still happen. Since all reliability data is attached to operation parameters such as flight 

cycles, flight-hours and power cycles, in the simulation a failure can only happen during the 

active operation, i.e. when the equipment is in the “Flying” state.  

Whenever a failure event is triggered during the flight, according to the failure rates 

programmed, the aircraft assumes the internal state “Failed” what causes it to be sent to the 

repair cycle via the use again of the Maintenance Request auxiliary agent.  

At this point, it should be noted that the same auxiliary agent is deployed on all 

maintenance circuits and that is because it has a variable which can assume any type of 

intervention and based on that deliver the equipment to the right circuit. 

Moreover, it is important to observe that the primary causes of unavailability may affect 

the airplane in isolation or combined. Any combination is possible and must be reflected in the 

model. In fact the number of actual combinations is what the analytical model seeks to increase. 

The implementation of those combinations was done with the insertion of branches, or decision 

points (represented by the diamond shapes in Figure 14), where potential synergies are verified 



70 
 
 

and, if possible, more than one type of maintenance task is then performed in parallel, 

improving efficiency and saving time.  

As a result of this dynamics in the implementation, a random failure event may cause 

either a disruption, in which case the accomplishment of the operational hours distribution 

commanded by the optimisation algorithm might be endangered, or it could instead signify an 

opportunity to bring forward other impeding maintenance demands, in which case the failure 

impact can be neutralized and absorbed within the same downtime.  

The level of anticipation allowed is set by a group of parameters which can be adjusted 

and are further discussed in the simulation results section. 

As it can be seen, the internal dynamics of the agent is governed by the transition rules. 

Because of that, the different types of transitions used in the model are explained in the next 

subsections, although it should be remarked that there are other possibilities available, which 

haven’t been employed.  

At this point, it is worth mentioning that the Anylogic© software is based on the Java© 

programming language and it allows the user to implement tailored codes within properties for 

all actions, functions and algorithms intended for every block, state and transition.  

Another advantage provided by the open and flexible structure employed by the 

software is that it allows the creation of libraries to integrate the simulation model with external 

programmes and codes written in other programming language such as Python©, which for 

instance is better to tackle data analytics problems. 

3.3.1.1  Transitions triggered by messages 

These transitions depend on the arrival of a message to become active and transfer the 

agent between states. The messages can be of different types, even agents can be regarded as 

messages, and the transition can be fired unconditionally, depend on the evaluation of specific 

values or expressions, or even consist in a particular type of string message. The transitions 

“Fly”, “Landed”, “Repaired”, “Checked” and “Replaced” are all examples of this type of 

transition. A example of message-triggered transition is displayed in Figure 16. 
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Figure 16 – Message-triggered transition “replaced” (Anylogic©). 

3.3.1.2 Transitions triggered by condition 

These are transitions that constantly monitor a certain condition waiting for it to be met 

by the simulation experiment. Once the condition becomes true, the transition is fired. The 

“rulExpired”, “checkExpired”, “failureDetected”, “fhCredit” and “checkExpireIdle” are 

examples of this type of transition. They also count with an action box where commands can 

be implemented as displayed by the example in Figure 17. 
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Figure 17 – Condition-triggered transition “checkExpired” (Anylogic©). 

3.3.1.3 Transitions triggered by timeout 

These are time-dependent transitions that are fired when the countdown is finished. 

These timers can have deterministic values or draw from a predefined distribution as showed 

in Figure 18 with the example of the “postCheckOK” transition. 

 

Figure 18 – Timeout transition “postCheckOK” (Anylogic©). 
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3.3.1.4 Transitions from branches 

These are a special type of condition-based transitions that come out of a branch, or 

decision node. Each branch has a default transition that is followed in case all other exits are 

false. The “noSynPC”, “noSynF” and “noBalance” are examples of default transitions, and 

“synFOk”, “synPCOk” and “synFCOk” are examples of conditional transitions coming out of 

decision nodes as illustrated in Figure 19. 

 

Figure 19 – Conditional transition out of a branch “synFCOk” (Anylogic©). 

3.3.2 Discrete-Event Simulation 

The flight and maintenance routines, for their turn, are better represented using DES 

because this type of simulation facilitates the sequencing of phases and their respective 

processes. In this case the time only passes during events’ durations, and it remains frozen 

outside of it, avoiding transmission of spurious variable values and the unwanted concurrence 

of tasks.  

This type of simulation is widely used in the logistics field because it is specially 

adequate for representing sequence of activities as it is the most common frame on which fits 

the base scenario for maintenance and support processes. 

3.3.2.1 Flight DES circuit 

 The flight circuit can be observed in Figure 20. This implementation allows for a 

detailed representation of the flight process including the aircraft push-back, storage, taxi, the 

pre and post flight checks, and the flight route.  

The available aircraft are allocated on the flight line in bays. From there, when the flight 

schedule triggers the flight event, they are taken to the pre-flight check bay where the 
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dispatchability is assessed. If the aircraft is considered good to go, then the transition out of its 

active internal state is fired and the agent performs the flight. 

 

Figure 20 – Flight routine implemented using DES (Anylogic©). 

The flight duration can be deterministic and pre-defined, or be stochastically determined 

by an expression, by the speed and flight path, or even by the route when it travels between 

airfields. The flight time distributions and the resulting durations drawn by the simulation will 

affect the ratio between operations parameters such as flight hours and flight cycles. As a 

consequence, items may age in marginally different ways than expected, what causes the 

moving intervals dynamics to change and also affect the no longer optimal flight hours 

distribution. 

3.3.2.2 Corrective maintenance DES circuit 

This part of the DES simulation is dedicated to perform corrective maintenance tasks in 

response to failure events triggered internally to the aircraft during their operation. It takes 

longer the preventive maintenance interventions for it requires the step of troubleshooting, i.e. 

investigating to understand what is motivating the functional loss and what needs to be done, 

which can bear a significant degree of complexity as explained by Tan and Raghavan (2007). 

The process entails the removal of the faulty item followed by a supply availability 

check. At this point there is an interface with another large field for exploration in this kind of 

problem, which is the inventory management. The item being removed can be a repairable part 

or a discardable unit, and each category has a different type of treatment. 

 The inventory levels calculation is out of scope within this research and is considered 

as an input in the model. This simplification only means a boundary to the scope with no 

negative or debilitating implication to the solution proposed. With effect, the only relevant 

information regarding the inventory is whether the spare part is available or not for immediate 

replacement of the failed item. 
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The implication can be translated in terms of delay time. If there is no stock available, 

the aircraft will remain on the ground waiting for the part to arrive. Once verified the 

replacement is available, the aircraft can be subjected to the repair task. At this point it may 

have to wait in a queue because the resources necessary for the task are scarce and could be 

seized by other aircraft. Otherwise the aircraft will undergo maintenance immediately and can 

be returned to the flight line within the timeframe of the active corrective action duration as can 

be seen in Figure 21. 

 

Figure 21 – Corrective maintenance circuit (Anylogic©). 

At the end of this process the downtime is incremented with the spent by the aircraft to 

overcome it. In case there is any synergic task performed together, the respective parameter are 

updated as well. 

3.3.2.3 Scheduled maintenance DES circuit 

This fraction of the DES model can be multifaceted since the model can handle the 

entire maintenance plan with the various types of checks such as Check A, Check C, Check D 

and others. Each one of those types of checks has a particular duration, scope and periodicity. 

For simplicity, only the type Check A was implemented. Nevertheless, it is valid to clarify that 

it is completely possible to execute the addition of other inspection types, but it is a 

sophistication that would not improve the contribution sought by this study. 

The scheduled intervention also requires a kit of materiel to be accomplished and the 

availability of this is verified pretty much in the same way as implemented for the repair circuit. 

The main difference here is in the availability parameter that is predominantly set to attend the 

necessity given that here the maintenance can be planned ahead and the maintenance centre can 

be prepared in arrears. The circuit is the one shown by Figure 22. 
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Figure 22 – Scheduled maintenance circuit (Anylogic©). 

At the end of the inspection process the overall fleet downtime is incremented with the 

time spent by the aircraft on it and the variable that counts the time until the next check is reset. 

In case there is any synergic task performed together, the respective parameter are updated as 

well. 

3.3.2.4 Predictive maintenance circuit 

This circuit is used when the agent detects that one or more of its components is 

depleting its Remaining Useful Life, that is, that it prognostics horizon is approaching the lower 

level boundary of the RUL confidence interval. 

The process have approximately the same stages as the repair, with the exception that it 

does not require lengthy troubleshooting as it might be case with a fault investigation. The 

circuit is represented in Figure 23. 

 

Figure 23 – Predictive maintenance circuit (Anylogic©). 

At the end of the replacement process the total  fleet downtime is incremented by the 

amount of time spent by the aircraft on its phases and the remaining useful life of the replaced 

components is calculated again. In case there is any synergic task performed together, the 

respective parameter are updated as well. 

3.3.3 System Dynamics Simulation 

The SDS is ideal for monitoring holistic parameters of the system modelled which have 

a continuous rate of change such as each aircraft’s time to inspection, but it was unnecessary 

for the simulation model used in this thesis. 
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The software used offers seamless integration between the three types of simulation 

presented above, but that also represents a challenge for the creativity process since there are 

many possible modelling approaches to represent the targeted system.  

On the other hand, the process of conceiving the simulation model also helps in 

understanding the real system since any relevant aspect of reality neglected or misinterpreted 

will most likely become apparent as an error or inconsistency during the simulation experiment. 

For instance, the point within the moving platform when the aircraft must be stopped 

has to be explicitly defined in the simulation whereas it wasn’t necessary for the analytical 

model calculations, although it had already been decided as the most imminent lower bound for 

safety and risk mitigation purpose. The interval at which the optimisation algorithm needs to 

be run recurrently, in order to compensate for unscheduled events without compromising the 

capacity planning at the maintenance facility, is not clear at the beginning, but the simulation 

provides a strong support for the analysis and the discussion will be present in the thesis. 

A third aspect with limited possibilities to reproduce in a static model and worth 

emphasizing is the dynamic behaviour of the moving intervals which tends to shrink as the 

operation progresses and each component gets closer to its failure point estimate (FEATHER 

et al., 2010). In the simulation model, the changes in forecast accuracy can be modelled with 

more freedom following any distribution desired, whereas in the analytical model this 

behaviour was emulated by the use of percentages. 

Finally, the simulation also permits executing sensitivity analysis to identify the drivers 

behind the performance metrics, automatic parameter variation and multiple runs for statistical 

analysis. 
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4 Results and Analysis 

4.1 Basic Analytical Model Results 

With the intention of verifying the coherence and consistency of the framework built as 

explained over the previous chapter, a set of fictitious data was assembled to represent a 

possible scenario for the model application. It should be noted that this initial model was built 

with the intention of serving as a proof of concept with a size chosen to enable a detailed 

explanation of the method. Following this, and given that the initial results give enough support 

to pursue this path, the expanded model subjects the method to a larger more complex setting. 

The case study proposed consists of a fleet composed by three aircraft each containing 

five monitored components for which there is IVHM data available as revealed by Table 2. 

Table 2 – Current RUL expected value per component and aircraft. 

 Component current RUL (Operational Hours) 
Aircraft 1 2 3 4 5 

1 200 205 194 202 215 
2  120  132 125 143 156 
3 230  246 223 225 248 

 

In addition to that, the uncertainty range for a confidence level of 90% is also known 
and can be verified in Table 3. 

Table 3 – RUL uncertainty limits for a 90% confidence level. 

 RUL Estimates (90% Confidence Level Bounds) 
Limit 1 2 3 4 5 
Upper 1.08 1.10 1.12 1.05 1.15 
Lower 0.90 0.85 0.90 0.95 0.90 

 

The co-location matrix Lij for this example is portrayed on Table 4. This symmetric 
matrix tells the model whether two components are located in the same access area or inspection 
zone. The model assimilates the potential synergy offered by this architectural characteristic 
and prioritises their overlay over those that require different setups and different access 
procedures like the opening of panels, or doors, and the disassemble of parts to clear the way 
for accessing the faulty component. The cell values are proportional to the gain provided by 
each pair in terms of downtime reduction. That is, when the tasks involved have long 
preparation and access times, the cell value for that pair should be higher. 
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Table 4 – Components’ Co-Location Matrix 

  Components’ Co-Location Matrix 
ITEM 1 2 3 4 5 

1   0 1 0 0 
2 0   0 0 0 
3 1 0   1  0 
4 0 0 1   0 
5 0 0 0 0   

 
Moreover, for this example, the supply parameters were all set to 1 in order to signal the 

stock availability of every component. This is a necessary assumption at this stage of the model 
development. With effect, the inventory levels are very dynamic variables and their changes 
cannot be captured or accommodated in a static mathematical model. At least this is valid for 
the case under analysis because the planning horizon is set until the next periodic inspection for 
each aircraft, i.e. a time span of months.  

The supply parameters are useful when the optimisation algorithm can be run on a 
frequent basis thus adapting to the changes in the scenario evaluated. This is going to be 
approached in more detail and discussed in the simulation model.  

Completing the input data required by the problem formulation, the aircraft scheduled 
maintenance interventions are staggered monthly in a diagonal resulting on the times to 
inspections from current date represented in Table 5. 

Table 5 – Time Before Scheduled Maintenance (TSM) per aircraft. 

Aircraft TSM (Months) TSM (Hours) 
1 2 1440 
2 3 2160 
3 4 2880 

 

Lastly, it was considered that the total number of flight-hours assigned to the fleet in 
analysis amounts to 500 flight-hours, and this target should not fall below 495 flight-hours or 
surpass a limit of 505 flight-hours, i.e. a 1% margin. With that, two baseline scenarios were 
created against which the optimised solution will next be compared. The baseline cases reflect 
the two most common distribution rules used in practice as per the authors experience. 

The results discussion can also benefit from a graphical illustration of how the different 
RULC are allocated in time from the utilization rates resultant of the flight-hours assigned to 
each aircraft. The baseline scenario 1 applies the same utilization factor to all members of the 
fleet as represented by Figure 24, Figure 25 and Figure 26.  
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Figure 24 – Aircraft 1 on Baseline Scenario 1. 

 
Figure 25 – Aircraft 2 on Baseline Scenario 1. 
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Figure 26 – Aircraft 3 on Baseline Scenario 1. 

The baseline scenario 2 splits the available flight-hours evenly among the fleet members 
resulting in the situation represented by Figure 27, Figure 28 and Figure 29. 

 
Figure 27 – Aircraft 1 on Baseline Scenario 2. 
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Figure 28 – Aircraft 2 on Baseline Scenario 2. 

 

Figure 29 – Aircraft 3 on Baseline Scenario 2. 

With a view to find the best possible division of these operational hours between the 

fleet members, the input data and the equations that form the model were inserted and built on 

a Microsoft Excel © spreadsheet. The optimisation was carried on with the help of the Excel 

add-in called Solver ©, which is a program able to optimise a given objective function subject 

to a set of constraints offering up to three different methods to find the correspondent values of 

the decision variables. 

For the case under analysis, obviously the Simplex Linear Programming method could 

not be considered since the problem behaviour does not follow a linearity rule. From the 

remaining two possibilities, the best result was obtained by the non-exact Evolutionary method, 
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which is based on a genetic algorithm, followed closely by the non-exact GRG Nonlinear 

method. The results can be compared on Table 6. 

Table 6 – Solver optimization methods results comparison. 

Method F(OP)
MAX OPH1 OPH2 OPH3 AE 

Evolutionary 7.3842 177.12 112.55 210.01 499.7 
GRG Nonlinear 7.3479 176.01 112.50 211.49 500.0 

The results analysis and discussion can also benefit from a graphical illustration of how 

the different RULC are allocated in time based on the utilization rates resultant from the flight-

hours assigned to each aircraft. The graphs plotted on Figure 30, Figure 31 and Figure 32 

represent the panorama ensued by the best solution found. 

 
Figure 30 – Aircraft 1 resulting panorama. 

 
Figure 31 – Aircraft 2 resulting panorama. 
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Figure 32 – Aircraft 3 resulting panorama. 

The charts testify the numeric results and show compliance and coherence with the 

objective pursued. In fact, the pictures corroborate that the framework was able to adjust the 

AE distribution in a way to maximize the overlaps extension amongst the moving intervals and 

between these and the periodical checks for each aircraft while reducing the risk of failure 

occurrence before the intervention.  

In order to clarify what the results mean in terms of downtime reduction, Table 7 

summarizes them presenting the number of operational hours distributed to each aircraft on all 

scenarios analysed, and an example of resulting downtime due to predictive maintenance tasks 

was calculated for comparison purpose.  

For this matter, it was considered that each task takes approximately 8 hours to be 

performed and that the task will be absorbed within the scheduled inspection duration in case 

its moving platform overlays with the check before the respective item’s RUL estimate, 

therefore offering less risk of running into failure.  

Although the overlaying between moving intervals was also improved, the benefit in 

terms of downtime reduction was not substantial and require further discussion. This aspect 

showed that a refinement in the model is due, which is accomplished further down this thesis 

with the expanded model. Basically the possibility of increasing the overlay between moving 

intervals generating downtime reduction is very limited when all components follow the same 

transfer function converting their RUL to the common time domain, thus the main contributions 

so far could be observed in the integration of predicted task with scheduled checks. 

Nevertheless, the transfer functions can differ significantly when items follow different 

operating parameters, have different application factors depending on the type of flight, or are 
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exposed to different degrees of load severity, nuances that are included in the expanded model 

enhancing the possibilities of obtaining gains from increased predictive tasks overlay rate. 

Table 7 – Optimisation results vs baseline scenarios 

 Aircraft (OPH) Downtime 

(Hours) Scenario 1 2 3 

Baseline 1 111.1 166.7 222.2 88 

Baseline 2 166.7 166.7 166.7 120 

Optimal 177.2 112.6 210.1 56 

From the data presented above it results that the solution offered by the model yields a 

reduction in total downtime of 36.4% against the strategy used in baseline 1 and of 53.3% when 

compared to that deployed on the baseline scenario 2. Despite the limitations imposed on this 

basic example, the results provided were impressively good in terms of the economies achieved. 

Within the strategy and methodology laid down for this research, this initial test served as a 

proof of concept and a test indicative of its potential. With effect it has been published and 

presented to the scientific community in several occasions as during the Prognostics and Health 

Monitoring Society Conference in 2021. The work in Figueiredo-Pinto et al. (2021) has 

attracted a lot of attention and there was no dispute against the novelty and originality claims, 

nor to the method deployed or the model formulation. 

Another positive aspect worth emphasizing is the flexibility and adaptability of the 

model to deal with scenario changes, making it ideal to highly dynamic situations such that of 

the IVHM and PHM data, which is constantly updated by new rounds of information arriving 

from the operations.  

This fast adjustment to changes provoked by new information was yielded by the 

intrinsic features built-in the framework, particularly its mathematical foundation and the 

ability to work with the uncertainty inherent to failure time forecasts. Flexible maintenance 

planning is indeed a required feature to improve “asset utilization and to reduce downtimes 

(maintenance opportunity times)” according to Ferreiro et al. (2012).  

Besides that, the model demonstrated to be adjustable to each user’s priorities by means 

of allowing the free attribution of weights and the use of levels of confidence compatible with 

their risk tolerance. 

Finally, the successful model verification and the reassurance received from academia 

cleared the path for its expansion through the addition of parameters such as those identified in 
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the mathematical formulation process, the easing of limitations or even the riddance of some 

assumptions, thus disclosing its full potential. 

In order to enhance the solution’s robustness and promote the model’s generalisation 

following our inductive method, a Monte Carlo simulation was conducted using Microsoft 

Excel ©. Keeping the same case settings in terms of fleet size and number of components, the 

RUL values were set to roam stochastically following an uniform distribution between 5 

operational hours (set as the minimum necessary to produce any logistic impact) and 200 

operational hours (maximum reasonable forecast horizon). A total of 100 different scenarios 

were created, each one with a specific set of initial random data. The total downtime resulting 

from the application of Baseline 1 and Baseline 2 rules of flight-hours distribution was 

calculated per scenario instance. Following that, the optimisation algorithm was run for the 

individual case sets and the resulting downtime was recorded. 

In this interim, it is important to highlight that the objective function depicted by 

Equation 1 works as a proxy in such a way that maximizing that expression leads to minimize 

total downtime.  

In order to translate the proxy result into downtime, an overlay-downtime conversion 

matrix as the one illustrated below in Table 8 was created for each aircraft. These matrixes 

count the number of overlays between tasks and inspections, and calculate the impact in 

downtime reduction based on the rule below.  

The rule applied for this example, which may be adjusted according to each scenario 

without significant implications, is that overlayed predictive tasks take the same amount of time 

as a single one would, for they all have the same duration and can be performed in parallel. 

When the overlay happens between a predictive task and the inspection, then that task is 

absorbed within the check duration.  

Table 8 – Overlay-downtime conversion matrix example 

Overlay Matrix Aircraft x 
 

 Item Check 1 2 3 4 
 

1 0         
 

2 0 1       
 

3 0 1 1     
 

4 0 0 0 0   
 

5 1 0 0 0 0 Downtime 
Total 1 2 0 0 0 40 

The objective is to verify to what extent the gains projected by the case study presented 

before will uphold in face of different scenarios and varying conditions. With that, instead of 
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comparing single outputs from baseline and optimised solutions, the comparison is now drawn 

between the downtime probability distributions with a view to test whether the expected 

downtime value using the optimisation mode is indeed significantly different (and better) from 

the ones presented by the baseline scenarios or not. 

The results from the Monte Carlo Simulation are summarized in the Table 9 and the 

graphical views of the distributions are displayed in Figure 33, Figure 34 and Figure 35. 

Table 9 – Downtime mean and variance per scenario 

Total Downtime Baseline 1 Baseline 2 Optimised 
Mean 159.6 150.1 101.7 

Variance 273.1 343.2 379.3 
Standard Deviation 16.5 18.5 19.5 

 
Figure 33 - Baseline 1 scenario downtime distribution 

 
Figure 34 – Baseline 2 scenario downtime distribution  
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Figure 35 – Optimised scenario downtime distribution 

Using the data provided above and considering that both mean and variance are 

unknown for any of the scenarios analysed, a hypothesis test was performed to determine if it 

is possible to affirm that the downtime is indeed reduced with a 5% significance level. 

Since it is not possible at first to infer whether the variances of the distributions can be 

considered the same, a F-test for variances was conducted and the results are presented on Table 

10 and Table 11. 

Table 10 – F-Test for baseline 1 and optimised scenarios variances 

  Baseline 1 Optimised 
Mean 159.6 101.68 
Variance 275.8787879 383.0884848 
Observations 100 100 
Df 99 99 
F 0.720143776  
P(F<=f) one-tail 0.052022977  
F Critical one-tail 0.717328593   

Table 11 – F-Test for baseline 2 and optimised scenarios variances 

  Baseline 2 Optimised 
Mean 150.08 101.68 
Variance 346.660202 383.0884848 
Observations 100 100 
Df 99 99 
F 0.904908959 

 

P(F<=f) one-tail 0.310037564 
 

F Critical one-tail 0.717328593 
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Based on the p-values (~ 0.052 for B1 vs Optimised, and ~ 0.310 for B2 vs. Optimised) 

presented above, both of them larger than the established significance level of 0.05, we cannot 

deny that the distributions have equal variances. Therefore, in order to check if it is safe to 

conclude that the expected value of total downtime is relevantly lower in the optimised scenario, 

and since we don’t know the real distribution followed by the variables, a homoscedastic t-test 

was performed and the results are displayed on Table 12 and Table 13 below. 

Table 12 – Homoscedastic t-Test for baseline 1 and optimised scenarios’ means 

Homoscedastic t-Test B1 vs OD Baseline 1 Optimised 
Mean 159.6 101.68 
Variance 275.8787879 383.0884848 
Observations 100 100 
Pooled Variance 329.4836364 

 

Hypothesized Mean Difference 0 
 

Df 198 
 

t Stat 22.56298892 
 

P(T<=t) one-tail 6.2299E-57 
 

t Critical one-tail 1.652585784 
 

P(T<=t) two-tail 1.24598E-56 
 

t Critical two-tail 1.972017478   

Table 13 – Homoscedastic t-Test for baseline 2 and optimised scenarios’ means 

Homoscedastic t-Test B2 vs OD Baseline 2 Optimised 
Mean 150.08 101.68 
Variance 346.660202 383.0884848 
Observations 100 100 
Pooled Variance 364.8743434 

 

Hypothesized Mean Difference 0 
 

Df 198 
 

t Stat 17.916728 
 

P(T<=t) one-tail 1.32604E-43 
 

t Critical one-tail 1.652585784 
 

P(T<=t) two-tail 2.65208E-43 
 

t Critical two-tail 1.972017478   

Based on the analysis of the tests’ outputs, it is now possible to state that the optimisation 

method promotes a reduction in the fleet total downtime given that the t-Tests demonstrated 

that the mean value of the downtime distribution for the optimised scenario is lower than the 

mean values of the other two scenarios with 5% significance level. With effect, the p-value is 

so low that the significance level could be improved and safely brought to the 1% level, and the 

conclusion would remain the same.  
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The results corroborate the initial expectations and helped to increase the solution’s 

strength. The significant gains primarily pointed out by the initial approach held true when 

submitted to the Monte Carlo simulation, what prompts to the conclusion that the claims of 

downtime reductions promoted by the analytical model may be generalised. One interesting 

point to note is that there was not a higher overlay between items with synergy recorded in the 

co-location matrix. This indicates that the marginal gains obtained in performing two specific 

tasks are not enough to drive the model towards it. 

A key aspect to be observed is that the downtime reduction converged to an average of 

34.2% (36,3% and 32,2% against baselines 1 and 2 respectively) on the simulation, which 

shows the importance of testing several scenarios. The initial data used to test the model was 

particularly not suited to baseline 2, therefore it created the wrong impression that this strategy 

was worse. As a matter of fact, the optimised solution delivers roughly the same gains compared 

to both baselines, reason why it was deemed unnecessary to perform tests against both 

references in the expanded model, but rather only baseline 2 was used for its stronger results in 

the simulation. 

On the other hand, it is important to take into consideration the fact that extraneous 

failure events, meaning those not related to the risk index in the model, might have a negative 

impact on planning, causing disruption and affecting the downtime reduction propelled by the 

analytical model. Since the optimisation model is static and considers a steady state scenario, 

the investigation about the failure effects on planning require a dynamic model that is capable 

to handle time dependencies.  

In fact, apart from the corrective maintenance events already contemplated in the 

expanded model, overall system failures could be embedded in the analytical model assuming 

constant failure (exponential reliability), which is a standard assumption in the aviation industry 

and many tools such as Systecon OPUS 10© applies it. However, the event timing can’t be 

defined and just the number of failures uniformly distributed will not suffice to allow for 

conclusions with respect to the potential disruptive role of failure and its ensued corrective 

maintenance actions.  

4.2 Expanded Analytical Model Results 

As explained in the previous chapter, the expanded model deals with more parameters 

and counts with less assumption. With that, in order to properly test this enhanced version, a 

more challenging scenario, which also offers more possibilities for improvement, was created 
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with 7 aircraft each one composed by 17 different components with QPA (Quantity Per 

Aircraft) equal to 1.  

Besides that, instead of distributing flight hours, the model now assigns quantities of 

flight types to be performed by each aircraft over an entire scenario horizon, instead of just up 

to the next periodical check. The global scenario input data is displayed on Table 14.  

Table 14 – Expanded model global input data  

Parameter Value 

Scenario length (calendar hours) 2.160 

Check duration (calendar hours) 48 

Assigned fleet flight-hours (AE)  1.200 (+/-2%) 

Assigned flights type 1 (FT1) – 1FH/FC 400 (+/-2%) 

Assigned flights type 2 (FT2) – 2FH/FC 200 (+/-2%) 

Assigned flights type 3 (FT3) – 4FH/FC 100 (+/-2%) 

RUL Confidence Level (CL) 0.9 

Maximum usage rate (LUL) 0.137 

Priority factor 1 (PR1) 1.5 

Priority factor 2 (PR2) 3.0 

Corrective maintenance duration (calendar hours) 12 

 
It is worth mentioning that the maximum usage rate showed on the table, or the limit to 

stay in the low utilisation category, is equivalent to 1.200 flight hours per aircraft per calendar 

year or 13.7% of the total elapsed time.  

It also should be reminded that the priority factors are flexible parameters that can be 

adjusted according to the scenario/user. The values for this case were defined with basis on tests 

that pointed better results with PR1 equal to 1.5, weighing 50% more the overlay with the 

periodical check as opposed to between predictive tasks, and PR2 at 3.0, thus boldly influencing 

the model to reduce the failure risk. It is key to understand that these values are flexible and 

intended to allow the user to balance the terms in the equation according to their interest and 

what makes more sense to their planning. It is also important to remember that these values are 

only used by the overlay maximisation objective function, and not by the downtime 

minimization one. 

The corrective action duration is the same for all components and it is set to take longer 

than the prediction-based ones in order to reflect the extra time spent on setting up the resources 
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and on troubleshooting when compared to a planned or expected event that allowed for 

anticipation. 

The input data pertaining to the aircraft is exposed on Table 15. 

Table 15 – Aircraft input data 

 Aircraft 

Parameter 1 2 3 4 5 6 7 

TTCL (Cal Hours) 168 504 840 1176 1512 1848 2184 

TTCU (Cal Hours) 216 552 888 1224 1560 1896 2232 

The TTCL and TTCU parameters delimit the periods when the periodical checks are 

executed. It should be noticed that they are staggered in such a way as to allow each aircraft to 

be attended at a time, which is standard in aviation when the agenda allows. During these 

periods the aircraft is grounded and no component or aircraft aging is computed in the model. 

One important aspect that demands clarification is the fact that aircraft number 7 

inspection falls shortly after the scenario length. This is not a problem and will happen every 

time the next inspection for a given aircraft is outside the scenario length. The next inspection 

is a necessary input to the model and needs to be accounted for in the current distribution 

because it might overlay with moving intervals within the scenario length causing an impact on 

the current period of evaluation.  

In reality, the expanded model can handle longer time spans, even when it embraces 

more than one periodical check per aircraft. In this case, another overlay summation, and the 

correspondent downtime calculations, must be added in the formulation for each scheduled 

intervention. It does not affect the model functioning and, with effect, the distribution of hours 

is restricted to the scenario length, so the assigned flights can only happen within this period 

according to each calculated utilization rate in any case.  

Next, the input data related to the components is presented in Table 16. 

Table 16 – Components input data 

   Application Factor   

Component Qty/Acft 
(QPA) 

Operational  
Parameter FT1 FT2 FT3 Task Duration 

(TDur) 
Stock 

Level (s) 
1 1 FH 100% 100% 100% 4 1 

2 1 FH 100% 100% 100% 4 3 

3 1 FH 100% 100% 100% 4 5 

4 1 FH 100% 100% 100% 6 2 
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   Application Factor   

Component Qty/Acft 
(QPA) 

Operational  
Parameter FT1 FT2 FT3 Task Duration 

(TDur) 
Stock 

Level (s) 
5 1 FH 100% 100% 100% 4 3 

6 1 FH 25% 50% 100% 4 4 

7 1 FH 100% 100% 100% 6 2 

8 1 FH 100% 100% 100% 8 1 

9 1 FH 100% 100% 100% 8 1 

10 1 FH 50% 50% 50% 8 1 

11 1 FC 100% 100% 100% 4 3 

12 1 FC 100% 100% 100% 8 2 

13 1 FC 100% 100% 100% 6 2 

14 1 FH 100% 0% 0% 4 2 

15 1 FH 100% 100% 100% 6 3 

16 1 FH 100% 100% 100% 6 2 

17 1 FH 100% 100% 100% 6 1 

The table above displays the aging parameter driving the components wear and the 

application factor for each component per flight type. For example, it can be seen that 

component 14 is not engaged on flight types 2 and 3, but it operates full time when the aircraft 

housing it performs flight type 1. It also informs how long it takes to perform a predictive task 

for each component. 

Another information available is the inventory level. For the analytical model, it suffices 

to state that they are all larger than zero, thus all items are included in the calculation. With 

effect, the absence of stock leads the analytical model to eliminate the item from the analysis, 

given that it is not worth arranging its predictive task if it cannot be successfully executed, 

which would be pointless at this point in the analysis. The same data is used in the simulation 

model where those levels change as the operation progresses. 

The co-location matrix considered indicates commonality of access between 

components 1 and 2, 3 and 4, 6 and 7, and between 10 and 12.  

Finally, the model requires a list with the components’ RUL and respective confidence 

intervals. The expected RUL values are randomly generated between 5 and 150 FH or FC as 

illustrated by Table 17, which is meant to be both realistic in terms of future projections and 

also providing a wide enough variation to test the model.  
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Table 17 – Example of RUL values 

 Aircraft 
Component 1 2 3 4 5 6 7 

1 72 26 85 74 64 92 110 
2 25 103 33 75 2 79 30 
3 14 55 82 48 101 115 73 
4 56 57 96 84 37 79 56 
5 113 63 86 37 44 106 107 
6 107 73 26 46 78 81 21 
7 103 73 38 82 40 112 41 
8 8 81 41 20 104 101 41 
9 106 54 61 57 98 33 86 

10 76 62 42 33 99 104 68 
11 31 61 96 109 38 84 106 
12 72 41 15 69 90 98 102 
13 36 75 33 102 85 99 81 
14 109 73 28 37 47 10 115 
15 43 34 41 27 78 98 25 
16 33 110 119 44 35 24 75 
17 41 20 88 39 46 105 11 

 
The confidence intervals were set to represent a coefficient of variation of 6.7%, 

meaning the rate between the standard deviation and the mean value in probability density 

function (i.e. 𝑅𝑅𝑉𝑉 = 𝜎𝜎 𝜇𝜇� ). Considering a gaussian distribution, the 90% confidence interval 

spreads approximately 3𝜎𝜎 around the mean value, i.e. a length of around 20% of the mean value. 

This reference represents a good representation of reality given that the closer is the RUL value, 

the more precise the forecast becomes, and narrower the confidence intervals, which is a 

behaviour well emulated by the use of percentages.  

Firstly the model in Equation 5 was put to test, namely the one focused on maximizing 

the overlay rate, both without and with the task duration terms (TDur), and the results are 

summarized on Table 18 with the distributions behind the downtime average values depicted 

on Figure 34 and Figure 35. It should be noted that all results following on this section are based 

on 100 iterations with randomly generated RUL values. The detailed results for each iteration 

can be found on Appendix A. 
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Table 18 – Expanded model results using Max Overlay objective function 

 Without TDur With TDur 

Results Overlay DT FRI Overlay DT FRI 

Mean 75.31 650.02 1.80 783.95 648.64 1.55 

Variance 86.05 468.43 1.26 8438.83 391.99 0.85 

Std Dev 9.28 21.64 1.12 91.86 19.80 0.92 

 

Figure 36 – Downtime distribution using overlay-based optimisation without TDur 

 
Figure 37 – Downtime distribution using overlay-based optimisation with TDur 
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Then the downtime minimization model was deployed on the same basis and the results 

are exposed on Table 19 and Figure 36. As expected, the downtime results for this function do 

not change significantly since the formulation was not affected by the changes involving TDur, 

therefore the 200 tests were consolidated on the graph presented by Figure 36. The results for 

the model with TDur were included in the table to provide a proper reference to compare the 

overlay rate results obtained from its equivalent in the maximum overlay equation.  

Table 19 - Expanded model results using Min Downtime objective function 

 Without TDur With TDur 

Results Overlay DT FRI Overlay DT FRI 

Mean 62.89 612.74 0.54 698.97 615.26 0.75 

Variance 78.04 418.45 0.14 9635.66 378.88 0.27 

Std Dev 8.83 20.46 0.37 98.16 19.46 0.52 

 

Figure 38 – Downtime distribution using downtime-based optimisation 

The baseline scenario results considering an even distribution of flights of each type 

amongst the fleet members can be seen on Table 20 and are also represented on Figure 37. In 

this case, the results for downtime and FRI are obviously rigorously the same. 

Table 20 – Baseline for comparison with expanded model results 

 Baseline without TDur Baseline with TDur 

Results Overlay DT FRI Overlay DT FRI 

Mean 55.91 672.12 3.14 632.18 672.12 3.14 
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 Baseline without TDur Baseline with TDur 

Results Overlay DT FRI Overlay DT FRI 

Variance 57.32 619.35 1.81 6099.59 619.35 1.81 

Std Dev 7.57 24.89 1.36 78.10 24.89 1.35 

 

Figure 39 – Downtime distribution using baseline strategy 

The optimal results were again obtained using the Evolutionary optimization method. 

The processing time averaged less than a minute to reach a solution without TDur and roughly 

2 minutes when taking the task durations into consideration. In this interim, it is worth 

mentioning that the results obtained through this non-exact method are not necessarily the 

global optimum or the best solution. Therefore, the downtime results presented arguably may 

still be improved with the use of more powerful heuristics. 

The average gains obtained are presented on Table 21 and the discussion follows 

afterwards. 

Table 21 – Expanded model results summary against baseline 

 Objective Function 
Results against 

baseline 
Max Overlay w/ TDur Max Overlay w/out TDur Min Downtime 

Overlay +24.01% +34.70% +10.56% 

Downtime -3.49% -3.34% -8.46% 

Downtime (checks 
discounted) 

-6.99% -6.67% -16.92% 

FRI -50.81% -43.11% -76.15% 
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The results above lead to the conclusion that the maximization of overlaying rates 

between moving intervals and periodical checks does induce downtime reduction and vice-

versa. In fact, as it can be verified on Appendix A, out of 100 iterations focused on minimizing 

downtime, 89 resulted in higher overlay rates, while 97% of the iterations focused on 

maximizing overlays resulted in downtime reduction.  

However, it has to be pointed out that the maximizing overlay function achieved lesser 

results when compared to the formulation where the minimization of downtime is directly 

targeted.  The explanation is that insisting on increasing the overlay extension may sometimes 

lead to inefficiency given that the smallest crossing between moving intervals and checks is 

already enough to join tasks, feature better captured by the downtime minimization model. As 

a consequence, the downtime focused model was able to deliver a reduction 2.42 times greater 

than that generated by the overlaying maximization one.  

It  should be clarified that although the models consider the total downtime in the 

formulation, including the portion relative to the time spent on the ground due to periodical 

checks, a fair evaluation of the model performance should discount these fixed values once they 

cannot be reduced or supressed. These lean values are presented in the row called “Downtime 

(checks discounted)” and are the final results taken into consideration for the analysis.  

Another important result brought by Table 21 is the reduction in the failure rate index 

effected by the models. The reductions on both formulations are substantial, but again the focus 

on downtime yielded better performance. Considering the disruptive impact caused by failures, 

it is also an important and welcome improvement that the model is able to deliver and confirms 

the intention of integrating seamlessly predictive, scheduled and corrective maintenance 

interventions. 

With regards to the use of TDUR or not in the formulation, the results do show a little 

improvement from a 6.67% downtime reduction without TDur to 6.99% using the task duration 

related terms in the equation.  

Considering the variability in the results, at this point it is no possible to conclude that 

using this term provides better results as a rule. Bearing in mind yet the increase in processing 

time, which was almost doubled, it apparently is not worth including this term in the 

formulation. However, it is conceded that this term may bring more significant gains in cases 

where the difference in duration between the tasks is more prominent. Therefore, it is concluded 

that this term should be kept in the model, especially when processing capacity is not a 

bottleneck. 
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Moreover, it is important to highlight that in comparison with the results obtained in the 

basic model testing, the enhanced solution offered more modest results although still very 

relevant. This performance accommodation was expected and is due to the elimination of 

assumptions, the addition of the failure risk index, and in face of a significantly more complex 

scenario with added constraints on the decision variables, which passed from float values to 

integers representing the number of flights assigned to each aircraft. 

Nevertheless, it was possible to identify that the more nuanced and varied the 

components behaviour in terms of how they age and how they are deployed, the higher the 

potential for the model to achieve better downtime reductions, especially those related to the 

overlaying between predictive tasks, compared to the reference strategy. Differences in aging 

parameters (e.g. operating hours, operating cycles, flying hours, thermodynamic cycles, 

calendar time, power-up cycles etc), application factors (e.g. mission systems only engaged in 

specific situations or flight phases) and also in wear severity due to environmental conditions 

are all contributing factors increasing the number of alternative solutions therefore enhancing 

the possibilities for model to deliver better results.  As a consequence, it is plausible to presume 

that the enhanced model might benefit from scenarios with more components given that the 

same assumptions, constraints and formulation are conserved. 

In order to check if the results hold up statistically, and in the same as it has been done 

for the basic model, a hypothesis testing battery is performed next considering the maximum 

overlay with TDur and the downtime minimization objective functions. As before, first the 

variances are compared in order to check if they can be considered equivalent. The outcomes 

for the variance analysis of the baseline against the overlay maximization and downtime 

minimization are respectively displayed on Table 22 and Table 23. 

Table 22 - F-Test for Max Overlay and Baseline downtime distribution variances 

F-Test OL-BL Max Overlay Baseline 

Mean 648.64128 672.12452 

Variance 391.9919849 619.3478535 

Observations 100 100 

df 99 99 

F 0.632910864  

P(F<=f) one-tail 0.011905368  

F Critical one-tail 0.717328593  
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Table 23 - F-Test for Min Downtime and Baseline downtime distribution variances 

F-Test DT-BL Min DT Baseline 

Mean 615.2593 672.12452 

Variance 378.8839702 619.3478535 

Observations 100 100 

df 99 99 

F 0.611746643  

P(F<=f) one-tail 0.00761996  

F Critical one-tail 0.717328593  

On both cases, the results indicate the existence of enough evidence in the data to believe 

that the variables distributions variances are different. Following that, and acknowledging that 

the real distribution followed by the downtime variables is unknown, heteroscedastic t-tests 

were performed to compare the mean values and the results are displayed on Table 24 and Table 

25. 

Table 24 – Heteroscedastic t-Test for Max Overlay and Baseline downtime distribution means 

t-Test: Two-Sample Assuming Unequal Variances Max OL Baseline 

Mean 648.64128 672.12452 

Variance 391.9919849 619.3478535 

Observations 100 100 

Hypothesized Mean Difference 0  

df 188  

t Stat -7.384302154  

P(T<=t) one-tail 2.41548E-12  

t Critical one-tail 1.652999113  

P(T<=t) two-tail 4.83097E-12  

t Critical two-tail 1.972662692  

Table 25 - Heteroscedastic t-Test for Min DT and Baseline downtime distribution means 

t-Test: Two-Sample Assuming Unequal Variances Min DT Baseline 

Mean 615.2593 672.12452 

Variance 378.8839702 619.3478535 

Observations 100 100 

Hypothesized Mean Difference 0  

df 187  

t Stat -17.99828059  
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t-Test: Two-Sample Assuming Unequal Variances Min DT Baseline 

P(T<=t) one-tail 5.58213E-43  

t Critical one-tail 1.653042889  

P(T<=t) two-tail 1.11643E-42  

t Critical two-tail 1.972731033  

Analysing the tests’ output and considering the infinitesimal low p-value on both cases  

it is possible to comfortably conclude that there is enough evidence sustaining the hypothesis 

that the mean values of the distributions are indeed different. More precisely, the tests showed 

that in both cases the expected downtime values are smaller than the average downtime 

provided by the baseline strategy.  

This result confirms the initial hypothesis set out on this research once the method 

developed for integrating predictive and preventive maintenance, and also minimizing the risk 

for corrective interventions, which consisted in a mathematical dynamic and adaptative model 

that optimally distributes flight-hours amongst the fleet members, is able to minimize total 

downtime, therefore being a valid solution capable of tackling the impact caused by the 

migration of scheduled tasks to condition-based ones both on availability and cost. Indeed the 

cost reduction results from the synergy created by the solution and is a direct implication of 

reducing downtime and the need for resources associated with it. 

In face of the previously analysis and discussion, it can be ascertain that the model 

development allowed for many tests which gradually led to improving the formulation 

culminating in the downtime reduction represented by Equation 3 which is faster to run, more 

flexible, counts with less assumptions and reached better results in terms of downtime 

reduction. The deployment of this model in real scenarios such as the Gripen NG and KC-390 

Millennium of the Brazilian Air Force with tens of aircraft and health monitored components 

will require higher data processing power to enable it to be run in a sensible time and allow for 

timely decision making. Notwithstanding the amount of data and operations to process, the 

implementation can be leaner and more sophisticated with the use of proper programming 

language such as Python©, which offers many data analysis libraries, and also investigating 

alternative heuristics which may be able to converge faster and effectively find a good enough 

solution.   

4.3 Simulation Model Results 

Initially it is important to register that the process of building the simulation model 

proved to be a good catalyst for keen reality observation contributing to enhance the knowledge 
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about the real system targeted and also improving the awareness of subtle aspects which could 

be otherwise unintentionally neglected.  

The aspects herein identified are emphasised throughout the text and will be a central 

part of the discussion that follows after the presentation of the results. That notwithstanding, it 

is interesting to mention that the simulation results are also key to support the generalisation 

and better understanding of the solution’s applicability. 

The input data to the model is imported from a Microsoft Excel© spreadsheet, which is 

connected to the model as a database. The input table with randomly generated data is available 

in the Appendix B – Simulation Input Data. It is important to remark that the data on the table 

is only the initial data from where the simulation departs.  

After that, as the fleet ages, all the model’s parameters vary and the remaining useful 

life estimates are updated or replaced according to what happens in the simulation instances, 

they can even be reset after a predictive intervention or a failure. The same is valid for the last 

check date and the aircraft age. 

In order to extract immediate dynamic value and understand better the results from the 

simulation, besides being able to record and export output data and watch their behaviour during 

the experiment, meaning live feedback, a control panel was developed showing the actual 

outcomes from each iteration such as downtime, the portion to which each type of maintenance 

accounts for, the quantity of synergic integrations of tasks performed (the so-called 

opportunistic maintenance planning successes) the actual distribution of each downtime parcel, 

the availability behaviour (or any other measure of effectiveness, or service level chosen), the 

actual aircraft MTBF and the adjustment parameters.  

All of this can be seen in Figure 38. On top of that, it is also worth to remind that the 

simulation counts yet with a bulit-in programmable console that records specifics events which 

the modeller might be interested in either for debugging or for detailed statistical analysis 

purposes. 
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Figure 40 – Simulation control panel. 

On the control panel it is possible to verify that the simulation model records the 

accumulated downtime across all members of the fleet, which is the target variable that the 

solution seeks to minimize. It also indicates the causes driving downtime by showing in relative 

and absolute values the contributions by each type of maintenance task to the total moored 

hours. Along with that, it also shows the resulting distribution of the random variables 

representing each maintenance type duration. 

On the top-right part of the panel the accumulated hours flown by the fleet can be 

checked. This data indicates the percentage of requested flight time that was actually performed 

and it can be used to calculate the maintenance hours per operational hour ratio, which is one 

of the main supportability metrics in aviation. 

The instantaneous amount accumulated in the flight-hours bank balance also can be 

monitored and its behaviour can shed light on the disruption level caused by logistics delays or 

by failure events that could not be avoided. The more hours accumulated, the higher the 

disruption level. 

The system availability is also displayed within the panel and recorded for post 

simulation analysis. As mentioned before, this is a dependent variable which is a function of 

both reliability and maintainability parameters. Since the optimisation model is concerned with 

reducing downtime, the effect on availability is only partial, but given that this is the most well-

knowns systemic measure of effectiveness, it is also important to monitor.  
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Finally, the panel also accounts for the adjustment parameters. These are constants 

which can be calibrated in order to increase or decrease the maintenance thresholds flexibility 

thus affecting opportunism behaviour of the system.  More specifically, they tell the model how 

much it can bring forward a scheduled check or an impending prognostics-based task, that is 

before the lower bound of the confidence interval is reached, considering that the aircraft was 

grounded for any other given reason. 

In face of that, the dyad solution tests were initiated by inputting the distribution 

promoted by the conventional method. This cases consist in the baseline against which the 

optimal distribution is compared in order to reach a conclusion whether the expected gains 

calculated by the analytical algorithm holds in face of the added complexity brought by the 

simulation model. 

The baseline scenario (BL) splits the available flights/flight-hours equally between the 

fleet members in what is the most straightforward line of management. The optimal distribution 

(OD) for its turn is the direct application of the values output by the analytical model. 

For each strategy, a total of 100 replications was performed according to the input list 

below and the co-location matrix represented on Table 26 resulting in the comparative 

downtime histograms depicted in the following figures.  

• Scenario length: 3 months. 
• RUL confidence level: 90% 
• q =  7 aircraft. 
• n = 17 items monitored. 
• AE = 1200FH to performed within the scenario length divided in 3 flight types. 
• si = supply level. 
• LUL = 1.752FH/year or 20% maximum rate of use. 
• Check A interval = 90 days. 
• Check A duration = 48 hours. 
• Predictive task average duration: 8 hours. 
• Corrective task average duration: 12 hours. 

Table 26 – Co-location matrix for components in the simulation case 

  Components’ Co-Location Matrix in Simulation 
Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 
 

                
2 1 

 
               

3 0 0 
 

              
4 0 0 1 

 
             

5 0 0 0 0 
 

            
6 0 0 0 0 0             
7 0 0 0 0 0 1            
8 0 0 0 0 0 0 0           
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  Components’ Co-Location Matrix in Simulation 
Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

9 0 0 0 0 0 0 0 0          
10 0 0 0 0 0 0 0 0 0         
11 0 0 0 0 0 0 0 0 0 0        
12 0 0 0 0 0 0 0 0 0 1 0       
13 0 0 0 0 0 0 0 0 0 0 0 0      
14 0 0 0 0 0 0 0 0 0 0 0 0 0     
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1    
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Based on that, the resulting distributions of operational hours and flights recommended 

by each strategy, baseline and minimum downtime optimal, are shown on Table 27 and Table 

28 respectively. 

Table 27 – Operations distribution (baseline) 

 

 
Table 28 – Operations distribution (minDT optimal) 

 
 
 

 

 

 

The expected resulting downtime, overlay and FRI for both approaches are displayed 

on Table 29. 

Missions Aircraft Total 

Flight type FH/Cycle 1 2 3 4 5 6  7  

1 1 57 57 57 57 57 57 58 400 

2 2 28 28 28 29 29 29 29 200 

3 4 14 14 14 14 14 15 15 100 

FC 99 99 99 100 100 101 102  

FH 169 169 169 171 171 175 176  

Missions Aircraft 
Total 

Flight type FH/Cycle 1 2 3 4 5 6  7 

1 1 95 22 58 46 42 69 68 400 

2 2 12 15 62 5 42 37 27 200 

3 4 2 23 30 2 18 14 11 100 

FC 109 60 150 53 102 120 106  

FH 127 144 302 64 198 199 166  
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Table 29 – Downtime, overlay and risk expected results (Analytical Model) 

Strategy Baseline Optimal minDT 

Overlay 694.67 724.98 

Downtime 689.97 610.41 

FRI 3.15 0.22 

Using those operational distributions as input, the simulation model was executed 50 

times for each strategy resulting in the graphs shown by Figure 41 and Figure 42.  

 

Figure 41 – Baseline downtime replication results histogram. 

 

Figure 42 – Optimal downtime replication results histogram. 
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As it can be observed on the figures above, for the baseline test the downtime values 

ranged from 665 to 809 calendar hours with and average of 729.99 calendar hours spent on the 

ground by the fleet members undergoing maintenance. 

The scenario using the optimal distribution on its turn varied from approximately 599 

to 720 calendar hours with an average value of 679.81 calendar hours spent on the ground by 

the fleet members undergoing maintenance. This result is on average around 6.9% better than 

baseline.  

In terms of the downtime per executed flight time ratio, the two scenarios managed to 

achieve more than 98% of the designated hours and the results are as follows: 

- Baseline: 0.612 calendar hours of downtime per flight hour; 

- Optimised Distribution: 0.567 calendar hours of downtime per flight hour. 

Using the raw data output recorded from the simulation model above and considering 

that both the population’s mean and variance true values are unknown for any of the scenarios 

analysed, a hypothesis test was performed to determine if it is possible to affirm that the 

downtime is indeed reduced with a 5% significance level. 

Since it is not possible at first to infer whether the variances of the distributions can be 

considered the same, F-tests for variances were conducted pairwise and the results are presented 

on Table 30. 

Table 30 – F-Test for B and OD simulation results variances 

  Baseline Optimised 
Mean 729.9868 679.8126 
Variance 1022.021214 808.1560156 
Observations 50 50 
df 49 49 
F 1.264633554  
P(F<=f) one-tail 0.207071191  
F Critical one-tail 1.607289463  

Based on the p-value above (p-value~=0.207), considerably higher than the required 

significance level of 0.05, it is possible to conclude with basis on the data analysed that there is 

not enough evidence to deny that the distributions of downtime variables for baseline and 

optimisation strategies do have equal variances. 

Therefore, in the same way as it has been done before in this text for the analytical 

results, in order to test the hypothesis and check what is safe to conclude regarding the expected 

value of total downtime using the optimised operational hours distribution compared to the 
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baseline results, and since we don’t know the real distribution followed by the variables, a 

homoscedastic test was performed for comparison and the results are displayed on Table 31. 

Table 31 – Heteroscedastic t-Test for B and OD simulation output downtime mean values 

Heteroscedastic t-Test B vs OD Baseline Optimised 
Mean 729.9868 679.8126 
Variance 1022.021214 808.1560156 
Observations 50 50 
Hypothesized Mean Difference 915.0886148 

 

df 0 
 

t Stat 98 
 

P(T<=t) one-tail 8.293137861 
 

t Critical one-tail 2.99273E-13 
 

P(T<=t) two-tail 1.660551217 
 

t Critical two-tail 5.98546E-13 
 

The t-test confirmed that the mean values representative of each scenario’s downtime 

distribution are significantly different. The p-value for the one-tailed comparison is extremely 

low, and more importantly also considerably lower than the significance level adopted.  

Those results evidently support the argument that the optimisation algorithm is indeed 

capable of reducing downtime and consequently supporting the fleet demand at a lower 

maintenance cost.  

An important aspect to observe is the disrupting role played by failure events and their 

deleterious effects to planning entailing that the analytical model calculated optimal flight 

distribution cannot hold for too long as the effects brought about by the faults to the 

accomplished number of flight-hours and the anticipation of tasks for synergy reasons amount. 

With effect, on both cases the simulated downtime was higher than the expected value from the 

analytical model calculation, especially when considered that during the simulation period the 

check on aircraft number 7 was not performed. Moreover, while the analytical model over all 

the random iterations calculated  an expected downtime reduction around 11.5% (or 22.4% 

disregarding the checks downtime), in the simulation model it could only reach 6,8% (or 11.3% 

disregarding the checks downtime). 

One possible reason worth investigating is that the optimised scenario is meant to be 

dynamic and evolve with the operation whereas the baseline policy is static. With that in mind, 

the simulation was set to stop every fortnight and call the analytical model to re-optimise and 

update the distribution according to what has happened up to that moment. This link is expected 

to reduce the effects of failure disruptions on the overall maintenance planning. 
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Once more, the results are based on 50 replications considering the same input data as 

before, this time only for the optimised scenario given that it would be pointless to stop for the 

baseline once the approach doesn’t change. The results are portrayed on the distribution in 

Figure 43. 

 

Figure 43 – Simulation downtime with link to analytical model for updating distribution 

In the same line as done before, the statistical analysis comparing the downtime 

distribution with recurrent updates against the previous one is summarized on Table 32 and 

Table 33. 

Table 32 – F-Test for single and recurrent optimised simulation results variances 

  Single Recurrent 
Mean 679.8126 648.1244 
Variance 808.1560156 508.5453149 
Observations 50 50 
df 49 49 
F 1.589152415  
P(F<=f) one-tail 0.054151714  
F Critical one-tail 1.607289463  

Table 33 – Homoscedastic t-Test for single and recurrent simulation output mean values 

Homoscedastic t-Test B vs OD Baseline Optimised 
Mean 679.8126 648.1244 
Variance 808.1560156 508.5453149 
Observations 50 50 
Hypothesized Mean Difference 658.3506652 

 

Df 0 
 

t Stat 98 
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Homoscedastic t-Test B vs OD Baseline Optimised 
P(T<=t) one-tail 6.17502806 

 

t Critical one-tail 7.51938E-09 
 

P(T<=t) two-tail 1.660551217 
 

t Critical two-tail 1.50388E-08 
 

The results confirm that there is indeed enough evidence to sustain the claim that the 

latest distribution presents a mean value lower than the previous one with 5% significance level. 

Following the analysis supported by that, it can be seen that the mean value of the 

distribution presented in Figure 43 is 648.12 calendar hours, which represents an improvement 

in downtime reduction of 4.6% (or 8% disregarding the scheduled inspections downtime). 

Despite this improvement, compared to the expected savings projected by the analytical model 

it is still 6.2% (or 31.2% disregarding the scheduled inspections downtime) worse. Part of this 

difference is explained by the timing when failures occur.  

On this, it is key to clarify that the range of downtime results observed so far in the 

simulation is mainly caused by the differences on the moments when random failures strike the 

fleet members. While on the bright side they can happen in convenient moments and coincide 

with preventive maintenance tasks, hence being completely diluted in the batch efforts or at 

most redounding in a minor hinderance. On the other side they may occur at moments when 

there is no neighbouring programmed or expected tasks that may be anticipated and joined with, 

therefore causing extra downtime time for its repair and also with the potential to cause further 

unavailability due to the disruption of the overall operational planning by misaligning the 

previously overlayed tasks.   

Based on the results above discussed, it is possible to conclude that recurrently updating 

the operations distribution via periodical executions of the analytical model does yield the 

benefit of mitigating disruptions and external interferences that affect the model’s efficiency.  

In other words, the optimisation model needs to receive updated data from the operation, 

run again and feedback a new optimal flight-hours assignment on a certain frequency. The tests 

showed that the rerunning cycle length depends on a series of factors, the most important being 

the failure rate.  

With that, and considering that the technology nowadays allows for instantaneous 

operational data gathering as flights occur, and near immediate database update on the ground 

stations, the cycle can be set according to the user convenience as long as it does not exceed the 

limit where the scenario has changed substantially enough to compromise the optimality of the 

operational hours distribution.  



111 
 
 

In practical terms the optimisation algorithm can be linked to this system and the 

solution can be constantly renewed. For the simulation purpose, the experiment was interrupted 

on a fortnightly basis and the optimisation algorithm repeatedly called and run, feeding back 

the updated distribution according to the remaining flight hours in the scenario. 

Furthermore, the simulation showed that level of confidence defined in the analytical 

model and the level of anticipation allowed or tolerated have significant impact on the fleet 

downtime resulting from the experiment. Ceteris paribus, these parameters values can be 

adjusted and improved following an investigation of how the results change as the values vary.  

The tests demonstrated a univocally and direct relationship between the level of 

tolerance and the resulting system effectiveness. In other words, the higher the margin 

represented by the anticipation factors, the higher the number of synergic events leading to 

downtime reduction. This behaviour is according to the reasonably expected once the more 

flexible the policy, the more room there is to create synergy.  

The problem here is that excessive use of anticipation may lead in the medium or long 

term to the alignment of preventive checks resulting in maintenance hangar overload and 

therefore also causing availability reduction. This finding is considered a good start point for 

further research since the investigation requires the development of regulatory compliant and 

effective criteria to help indicating the optimal margin for each operation/scenario. This is out 

of scope of the present study, but it is worth to remark that this is an example of aspects only 

possible to identify when dealing with a dynamic model such as the simulation model developed 

herewith.  
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5  Conclusion 
The results reached by this research endeavour confirmed the ability of the proposed 

method and solution to answer the objectives set out at the dawn of this work. It complied with 

the intended use of IVHM/AHM data to maximize the utilisation of a condition monitored 

component’s useful life in lieu of acting prematurely, while dealing with the inherent 

uncertainty through the use of random variables expected values associated with their 

confidence intervals to minimize the risk of a condition monitored item running into failure, by 

timing the maintenance point of action at their lower bounds and with the use of the Failure 

Risk Index. Ultimately and most importantly, the research culminated in the development of a 

model that demonstrated the ability to optimally distribute flights or flight hours to effectively 

minimize a fleet downtime based on the augmentation of the overlay rate between predictive 

tasks and scheduled checks.  

The research strategy was successful in so far as the literature review pointed out to the 

relevance and maturity of the theme, which had a clear gap in linking prognostics methods for 

predictive maintenance with operations and maintenance planning that is, ultimately, what 

creates value to asset stakeholders. That gap has been fulfilled by the proposed solution and 

derives from rigorously following the flowchart set out in the designed methodology, and the 

novelty and originality of the contribution has been preserved despite the various works being 

published concurrently with this thesis development. 

The initial model, analytical in its essence, served as a proof of concept indicating the 

potential gains offered by the optimisation algorithm. The primary results were subjected to the 

scrutiny of the scientific community in several different opportunities and were validated by it. 

With effect, the novelty claim, the methodology and the algorithm construction have not been 

disputed, and the relevance of the subject matter is reflected in the substantial level of attention 

drawn by the publication in the 2021 European Conference of the PHM Society. 

The main contribution offered by this thesis is synthesized in the expanded model 

formulation, represented by the objective function in Equation 3. It is an unprecedented method 

to dynamically coalesce maintenance events in time with the aim of minimizing downtime for 

a complex system fleet via the optimal distribution of flights or flight-hours based on the 

overlaying of predictive and scheduled maintenance while also minimizing the risk of incurring 

in failures associated with the monitored items.  

The use of Monte Carlo simulation provided robustness to the solution allowing for a 

generalisation of results given that it becomes evident the claimed downtime reductions hold 



113 
 
 

up statistically. Not only that, it also confirmed this research hypothesis that if the overlay rate 

between moving intervals and periodic checks is increased then the overall downtime is 

reduced. Likewise, it demonstrated that the model was strongly able to also minimize the failure 

risk index concurrently to the main objective. 

The hybrid simulation model for its turn exposed the analytical model frailties as it takes 

into account the complexities of the flying system time dependencies which cannot be grasped 

in a static mathematical model. This implementation meant a great challenge to a formulation 

conceived in a steady-state paradigm, but it was essential to validate the model’s adherence to 

reality and its applicability as a decision support tool for a fleet manager. 

The simulation deployment also helped to better understand the implications of  

assumptions initially adopted to limit the scope and make the optimisation algorithm viable. In 

this sense, it proved to be a great research tool. One of the most critical representative of this 

improvement is the treatment and consequences of failure occurrences. These events are not 

ruled out either in the original model or in the simulation, but while in the analytical model they 

are represented by a risk index associated with the monitored components, in the simulation 

experiment it was possible to add random system failures and evaluate the consequences related 

to the moments when failures strike.  

For instance, during the simulation experiments it was possible to understand that if a 

failure event happens in a point in time far away from any periodic or condition-based 

intervention, the isolated stop to tackle that individual fault might disrupt the flight schedule 

and compromise the achievement of the planned flight-hours for the period, causing 

components to age less than expected and misaligning the moving intervals. In doing so, it 

unveiled that the optimisation model implementation requires recurrent runs with input data 

updated according to what happened during operations in order to keep the effectiveness of the 

method.  

Conversely, if the functional loss takes place at a more propitious moment when there 

is the possibility of coalescing other maintenance activities, then it might be used as an 

opportunity to synergically process differed tasks or perform neighbouring preventative tasks 

of impeding predicted failures or near expired scheduled tasks simultaneously.  

As demonstrated, the effects related to time dependency can only be captured using 

simulation because it is not a matter of how many failures happen during a period, as it is usually 

considered in models focused in steady state scenarios, but when exactly it happens changes de 

results. The simulation therefore is recommended as a tool to enhance decision support to 

operations planning insofar as it helps to better understand the scenario, calibrate the 
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anticipation factors according to the user’s interests and also investigating time-dependent 

nuances, consequences and trade-offs. 

In this line of thought, another contribution provided by this thesis was the analysis of 

how the adjustment of parameters driving the anticipation or delay thresholds can improve the 

overall results. This was an aspect enlightened by simulation which cannot be perceived, tested 

or enhanced otherwise. 

Considering the innovative trait of this scientific work, it is reasonable to argue that it 

opened an unbeaten path for investigation and as such it is prone to enhancements, especially 

those where the use of machine learning and better heuristics are concerned with a view to 

improve the methods employed in the initial solution developed. In this sense, it is worth 

mentioning that the model could be expanded beyond the initial scope defined for this thesis. 

While the verification and validation processes intended at this stage would not benefit from 

incorporating support resources limitations and detailed maintenance tasks features as those 

contemplated by prescriptive maintenance, it must be noted that flexibility and adaptability are 

built-in characteristics of the model design resulting the its ability to be expanded and absorb 

further parameters for real life implementation. Indeed, some aspects such as inventory levels 

are already in the analytical model and can be further studied from this formulation. 

That notwithstanding, the simulation model developed herewith also offers a sensible 

basis on which to build upon for future research where it can be expanded to incorporate support 

elements which were not contemplated within the scope of this thesis.  

At this point, it is important to highlight that although the Anylogic© simulation 

software is impressively vast and flexible, it does require a significant amount of computational 

processing power which grows exponentially with the size and complexity of the model. 

Therefore it is recommended that anyone willing to expand the current model to include 

further levels of detail should take into account whether the necessary infrastructure is in place 

to support the development. On the other hand, given the need for recurrent executions of the 

analytical model in a real deployment, it is important that the optimisation model is able to run 

in a lean, light and fast way. Thankfully for the implementation of the analytical model it is 

possible to resort to already existing powerful and lean programming languages such as 

Python© which have a myriad of data analytics libraries that can provide more efficient 

heuristics to reduce the need for processing power thus speeding up the processing time. 

The possible developments envisaged by the author include mainly: 

- The incorporation of rules to avoid stopping simultaneously more aircraft than the 

maintenance capacity is able to service prioritising with basis on the calculated gains 
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promoted by tasks overlay on each aircraft member of the fleet. On the flipside, the 

concurrent stop of more than one aircraft might be desirable and create synergy by 

sharing deployed resources in the hangar. This is also a possible extension to the 

model, which could seek to overlay stops up to a maximum service capacity. 

- The expansion to embrace commercial jets operations allowing aircraft to operate 

and be serviced in different locations. This would yield a substantial increase in 

complexity due to the many local capacity parameters that would have to be 

replicated on each base and all the flight schedule implications following delays due 

to failures and lack of required resources. No doubt this is a challenging expansion, 

but it would severely widen the current model’s range of applications. 

- The use of specific confidence levels to each component according to its criticality 

instead of a single confidence level to all items. 

Reflecting upon the process and the results obtained it becomes clear that aviation 

maintenance is facing the beginning of a new era. The opportunities to streamline maintenance 

are significant, technology is in place, massive quantities of data are made available in both 

timely and accurate fashion, data analytics algorithms and applications are in frantic 

development, and regulators are anointing to the certification for maintenance credits and the 

incorporation of AHM/IVHM in the preventive maintenance planning methodology.  

In summary, this research was able to raise an extensive panorama of this new setting 

and closed the gap found in the literature by proposing a method that successfully managed to 

extract actual value from the information produced by smart components.  

The signs of positive payoffs are convincing, therefore deepening the approach 

developed is encouraged and is expected to bear fruits for real life implementation. With effect, 

the study results showed that for IVHM-enabled system platforms, with condition and 

prognostics-based maintenance interventions, the conventional way of performing flight 

assignment and/or the distribution of operational hours, represented by baseline scenarios, may 

render CBM+ items to actually increase downtime. On the contrary, the optimisation method 

developed can support better decision making and potentialize the use of information to 

distribute flights or flight-hours in a way as to reduce downtime thus increasing availability and 

reducing costs.  

Extrapolating the current scenario onto the future, and considering the steady growth 

in the use of sensing technologies, health data processing and prognostics algorithms, there will 

be a point where the definition of a single maintenance plan to all aircraft of the same model 

will no longer make sense. In this likely situation, individual dynamic maintenance plans will 
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be required and the optimisation model developed can help to minimize downtime impact 

offering a better way of packing tasks than what is currently adopted in Maintenance Review 

Board Documents (MRBD) as previously discussed in the text. 

Finally, it is important to remark that for new and sophisticated platforms such as the 

Gripen NG and KC-390 Millennium there is an abundance of operational data automatically 

generated in approximate real-time. With this raw information constantly being fed into and 

housed by well-structured databases linked to dedicated analytics tools such as the MGSS 

(Maintenance Ground Support System) and the AMMS (Aircraft Maintenance Management 

System) that accompany the SAAB system, the input required by the optimisation solution is 

already available and the benefits can start to be reaped with the integration of the analytical 

model and those systems in a duplex communication channel thus providing support to decision 

makers both in the support and operational organisations. 

 

* This study was carried out with support from the “Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001” and from the 

“Projeto Pró-Defesa IV – Desenvolvimento do Suporte Logístico Integrado para Aeronaves de 

Defesa EMBRAER KC-390 e Saab Gripen – Processo 88887.286171/2018-00”. 
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Appendix A – Expanded Model Results 

TEST 
Max Overlay w/ TDur Max Overlay W/out TDur Min DT Baseline 

OL DT FRI OL DT FRI OL DT FRI OL w/ 
TDur 

OL  
TDur DT FRI 

1 966.52 610.73 3.4 84 607.138 1.96 871.32 577.26 0.58 666.58 55.1 632.636 2.47 
2 789.73 674.19 2.42 79.5 677.476 4.77 651.54 608.2 1.13 717.53 71.4 700.084 0.93 
3 826.48 651.41 1.8 70.2 661.804 1.28 741.56 594.91 0.45 594.13 53.7 674.472 3.94 
4 900.68 661.31 1.23 83.8 655.146 5.02 657.7 618.33 0.4 591.79 64.8 664.48 4.85 
5 976.17 604.37 0.4 78.7 597.426 0.87 920.85 569.33 0.31 675.24 66 643.044 2.13 
6 755.44 656.8 0.82 91.4 667.664 5.53 686.5 630.65 0.8 525.76 52.1 679.6 2 
7 839.89 656.92 1.57 67.4 680.182 0.94 559.8 650.65 0.62 599.04 55.5 692.14 2.05 
8 878.06 641.51 1.25 91.4 663.892 5.34 669.83 614.41 0.59 645.09 72 726.256 7.62 
9 731.27 669.53 0.33 61 660.656 3.02 533.99 629.84 1.1 552.32 49.6 679.08 2.32 
10 834.58 623.45 1.8 77.9 652.844 2.48 648.2 606.89 0.33 638.81 67.6 698.756 5.62 
11 738.94 627.19 0.67 70.3 648.766 1.92 736.72 606.97 0.27 607.57 62.9 642 1.67 
12 786.36 683.81 1.56 70.7 670.828 1.56 592.72 633.41 0.18 592.31 56.6 699.704 1.83 
13 731.96 636.77 3.38 77.2 672.514 3.38 672.86 588.44 0.5 532.29 56.5 706.736 3.22 
14 762.74 662.79 2.67 84 650.976 3.42 749.94 621.85 0.54 545.71 56.9 681.404 4.58 
15 883.49 660.01 1.36 74 654.304 2.43 705.71 641.59 0.23 715.24 65 657.708 0.16 
16 830.95 646.7 2.78 79.3 646.014 2.78 823.64 616.27 0.37 736.5 68 669.716 2.57 
17 777.54 666.4 4.46 76.6 658.128 4.46 760.38 615.11 0.94 693.83 67.4 670.968 3.61 
18 673.28 666.48 1.34 66.9 669.168 1.96 659.77 621.98 0.42 564.68 51.5 673.528 1.81 
19 770.92 642.67 1.36 72.2 659.75 2.2 741.17 617.86 0.21 617.64 56.8 631.132 2.14 
20 656.83 648.25 1.87 76.2 660.148 3.16 598.17 612.04 0.62 595.03 53.8 655.204 2.33 
21 770.92 667.12 1.03 80.3 667.78 2.2 748.08 627.08 0.94 670.25 61 723.748 5.21 
22 740.76 672.82 2.48 71.6 662.04 4.45 723.31 637.33 1.23 623.21 56.7 682.764 3.03 
23 858.12 664.85 1.19 83.7 620.726 0.62 799.94 602.22 0.69 696.57 50.8 676.2 2.8 
24 784.84 650.03 1.67 63.8 648.408 0.96 775.87 636.57 1.16 622.14 40.5 662.15 2.42 
25 822.6 598.32 0.96 82.4 611.274 1.23 792.99 561.72 0.16 708.19 62.8 654.224 3.73 
26 749.8 674.65 3.95 76.7 653.248 1.41 690.42 635.92 1.29 529.44 43.8 681.796 5.17 
27 787.6 673.41 1.48 72.5 656.06 0.75 640.44 619.42 0.87 584.21 51 675.876 2.77 
28 777.52 646.33 1.51 82.8 643.8 1.65 789.4 614.93 1.18 595.58 48.4 660.036 2.97 
29 866.16 606.63 1.54 72.8 642.358 0.96 809.79 587.86 0.73 851.25 51.8 613.36 1.42 
30 837.24 633.68 0.34 79.9 675.738 1.46 587.39 600.95 0.27 635.29 56.8 694.112 2.24 
31 741.96 643.5 0.69 75.9 638.882 0.64 717.55 622 0.37 616.76 56.6 672.17 2.98 
32 696.42 663.37 2.53 69.5 671.884 0.18 629.78 637.52 1.44 566.06 47.8 705.88 5.35 
33 738.14 656.64 0.43 71.4 657.126 1.12 705.33 643.91 0.36 600.81 51.5 672.988 1.76 
34 910.47 611.77 2.94 87.1 622.198 0.76 893.86 589.99 0.93 788.73 66.7 632.752 3.04 
35 631.4 676.97 1.02 66.1 675.808 1.46 628.28 639.02 0.09 549.61 47.3 747.592 4.59 
36 744.22 656.72 2.47 75 653.108 1.21 701.1 625.19 1.59 706.66 58.6 663.74 4.05 
37 773.44 656.73 3.77 66.1 651.23 0.85 695.34 634.11 0.94 578.32 52.9 657.952 1.29 
38 638.7 666.2 1.5 64.1 636.818 1.56 610.39 641.88 0.73 603.49 50.1 660.108 3.16 
39 961.28 607.47 1.62 90.9 596.454 2.08 891.69 586.27 1.51 818.15 73.1 613.06 1.95 
40 702.7 620.68 0.99 65.6 638.7 0.25 655.62 588.44 0.04 602.77 51.7 650.94 3.8 
41 688.76 656.86 0.45 73.2 667.938 1.11 626.3 634.61 0.06 606.34 50 687.052 4.54 
42 763.04 647.37 0.87 61.9 641.118 0.66 708.07 614.98 0.09 717.19 60.5 682.744 5.63 
43 812.74 622.67 1.54 77.6 615.564 1.63 802.57 605.63 1.08 735.98 64.7 630.42 1.15 
44 763.6 660.53 0.42 74.6 659.654 1.63 659.91 624.01 0.56 634.58 56.8 672.268 3.36 
45 767.16 613.52 0.88 75.7 620.71 1.55 710.34 590.12 0.2 613.51 56.1 624.916 0.82 
46 716.65 663.62 1.08 76 653.948 0.36 620.65 610.41 1.15 568.43 52.5 687.472 1.44 
47 822.73 635.86 1.84 75.6 615.916 1.47 715.03 592.1 0.38 676.01 57.7 671.784 4.43 
48 826.85 667.95 1.48 75.9 662.266 1.32 608.39 636.42 0.22 598.89 52.9 693.48 3.1 
49 858.26 642.38 1.7 84.8 637.212 1.04 771.91 621.29 0.68 750.82 66.5 651.048 1.21 
50 784.1 662.35 2.25 68.5 678.554 3.38 742.1 620.52 0.42 588.51 50.3 694.952 3.79 
51 912 663.16 2.51 84.6 660.164 1.68 615.91 641.36 0.52 615.9 53.8 689.28 1.6 
52 670.85 640.83 1 73.9 679.072 2.69 599.78 626.03 0.93 591.17 51.1 695.576 5.52 
53 804.92 649.66 2.01 77.7 634.02 1.85 751.14 595.29 0.68 662.61 59.4 672.168 2.61 
54 677.17 683.98 2.78 66.2 690.306 1.32 627.09 643.22 0.85 570.55 49.8 703.948 2.96 
55 787.09 662.88 0.82 72.1 664.774 1.18 603.11 625.38 0.87 716.73 59 664.704 3.58 
56 752.45 625.61 1.63 70.1 608.422 1.89 668.07 577.97 0.74 631.64 55.8 629.788 2.76 
57 1113.45 621.89 1.47 100.8 630.458 1.71 1048.51 595.05 1.95 867.89 74.9 644.236 4.47 
58 859.99 649.17 3.26 69.6 658.73 1.55 763.48 610.79 0.81 703.52 57.9 661 2.5 
59 666.45 663.91 0.55 47.3 673.114 2.33 548.05 625.76 0.72 520.91 43.7 678.772 5.44 
60 788.5 619.19 0.48 72.8 632.922 0.64 685.18 599.42 1.24 657.99 57.5 633.208 1.41 
61 823.19 651.04 0.84 79.9 645.988 2.41 784.6 629.35 1.61 604.77 51.3 695.112 4.74 
62 789.13 648.29 1.51 81.9 656.726 0.62 739.43 614.47 0.6 634.32 59.1 657.624 4.23 
63 971.56 622.89 2.86 99.7 599.256 0.67 809.07 575.03 1.21 774.92 66.5 627.612 3.49 
64 722.85 642.38 0.22 73.7 658.43 2.45 622.09 612.1 1.49 596.9 53.2 661.232 2.89 
65 709.08 684.21 1.69 61.6 679.638 1.26 566.03 642.77 0.44 559.92 50.9 689.104 2.33 
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66 784.45 651.43 0.87 72.2 675.934 2.03 763.03 637.08 0.66 581.63 53.7 681.408 2.16 
67 701.88 676.26 0.95 68.5 683.22 2.7 600.26 646.4 0.41 549.13 47 714.952 3.79 
68 871.19 664 0 80.5 648.84 1 739.35 620.12 0.38 641.68 53.5 711.34 6.05 
69 650.58 654.43 1.89 60.5 648.158 1.31 613.56 610.39 0.96 586.81 50.9 659.104 1.58 
70 666.19 650.96 2.13 70.4 626.938 1.01 578.13 615.95 1.11 501.33 43.2 689.904 3.33 
71 872.27 655.85 1.47 84 646.47 3.75 793.91 616.8 0.07 768.52 66.8 664.784 1.93 
72 822.53 652.46 1.34 84.1 642.12 0.2 711.56 621.41 0.69 755.98 67.8 668.588 3.76 
73 720.51 658.65 2.28 59.9 659.458 2.36 675.6 616.19 0.2 574.61 49.2 670.676 3.02 
74 732.31 659.6 1.44 71.9 652.216 1.32 635.79 600.25 1.51 623.83 53.8 671.468 2.36 
75 735.88 651.6 0.89 74.5 655.358 1.71 592.08 605.23 1.97 584.51 51.8 663.204 3.08 
76 933.45 651.37 1.61 87.3 661.226 1.97 873.23 595.23 0.3 780.48 68.3 664.38 4.85 
77 747.5 631.22 2.15 76.1 626.466 2.27 715.89 599.45 1.25 627.2 54.5 653.1 3.25 
78 728.71 652.28 1.32 71.6 658.72 1.55 633.49 606.48 1.34 627.08 52.4 659.056 3.62 
79 695.23 624.148 2.36 77.1 624.148 2.36 641.02 627.42 0.13 551.51 47.1 661.696 3.67 
80 816.52 612.85 1.19 87.2 596.894 1.93 755.86 569.39 0.68 733.43 63.2 637.812 4.24 
81 870.33 651.01 1.76 71.6 637.224 0.48 777.23 614.32 0.07 655.19 56.6 655.44 1.8 
82 603.47 668.91 1.2 65.9 666.25 1.5 472.02 648.66 2.47 442.64 35.6 698.352 4.29 
83 1023.14 632.66 2.84 105.6 633.826 3.32 972.02 596.61 0.06 754.45 65.8 695.884 5.18 
84 740.27 623.53 0.7 81.8 633.224 1.23 665.16 606.54 0.79 632.79 54.9 642.592 2.09 
85 676.44 667.37 0.87 62.8 678.708 1.36 644.95 638.03 0.19 561.57 47.6 693.72 1.65 
86 779.46 661.37 0.31 73.2 662.082 1.49 689.55 636.65 0.25 636.14 58.2 687.54 2.55 
87 646.92 654.12 1.68 65.51 651.422 0.69 626.64 620.56 0.98 560.88 46.4 683.144 2.88 
88 871.05 642.07 0.19 79.6 665.684 0.53 766.55 624.62 0.24 647.62 55.5 711.024 3.98 
89 744.72 643.11 0.84 71.5 624.556 1.72 637.81 613.22 1.41 617.04 55 662.928 2.31 
90 800.99 632.2 0.94 71.7 643.182 1.59 766.92 620.87 0.45 611.8 55 656.68 2.1 
91 922.3 631.1 2.69 90 628.464 0.78 828.52 590.72 2.32 678.98 63.4 663.976 2.77 
92 771.13 668.33 0.22 72.9 672.796 1.92 637.27 642.85 1.19 586.06 51.3 690.616 4.32 
93 613.49 684.26 1.32 63.4 685.87 1.1 567.18 635.06 0.47 530.09 47.2 696.872 1.94 
94 795.78 644.53 1.72 73.5 640.1 0.75 743.21 613.26 0.3 646.06 57.2 680.704 3.58 
95 708.34 630.19 3.54 70.4 623.786 2.57 586.46 598.54 1.16 593.06 48.6 677.724 4.98 
96 660.87 658.19 0.76 68.8 666.01 1.85 536.8 618.66 1.54 526.39 46.1 669.464 3.28 
97 839.48 635.87 0.54 82.4 663.796 2.57 685.26 601.66 0.34 563.96 49.2 693.068 4.36 
98 818.9 640.16 0.94 91.2 624.568 1.91 758.87 616.5 0.97 711.47 67.3 651.044 2.88 
99 756.56 669.48 2.36 68.1 670.548 2.46 674.13 622.81 1 575.27 55.5 687.888 3.51 

100 773.17 637.18 0.66 68.8 660.478 0.41 671.67 605.6 0.52 644.72 56.3 662.724 1.73 
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Appendix B – Simulation Input Data 
 

 tailNumber 
Input parameter 1 2 3 4 5 6 7 

ageFH 453 558 247 398 475 455 224 
TTCL 168 504 840 1176 1512 1848 2184 
rul1 139 79 31 143 146 110 150 
rul2 149 57 88 90 94 12 22 
rul3 51 16 98 13 88 90 69 
rul4 88 21 44 125 35 53 25 
rul5 12 6 39 76 137 14 145 
rul6 56 104 134 108 97 147 31 
rul7 143 141 68 53 96 13 76 
rul8 101 149 63 37 95 7 90 
rul9 122 15 90 74 80 90 35 

rul10 19 149 109 83 122 88 56 
rul11 26 31 65 140 80 110 32 
rul12 120 112 60 78 85 122 126 
rul13 97 87 103 137 39 133 12 
rul14 53 86 9 29 127 13 27 
rul15 82 77 66 119 35 89 43 
rul16 79 76 26 131 37 124 32 
rul17 66 141 144 119 100 105 99 

MTBF 73 73 73 73 73 73 73 
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