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Success is born of wanting, determination,
and persistence in reaching a goal.

Even if they do not reach the target,
those who seek and overcome obstacles

will at least do admirable things.
— José de Alencar, a Brazilian lawyer



Abstract

This thesis addresses the critical challenge of planning and executing aerial pickup and
delivery of goods across Brazil’s vast territory, a complex process often jeopardized by
rapid loading requirements and the risks of cargo unbalancing and misdelivery. Faced
with the urgency of rapid takeoffs and the complexities of distributing goods over
Brazil’s extensive territory, this research tackles the unexplored problem of optimizing
air cargo load planning with routing, pickup, and delivery, balancing utility scores, cargo
weight, and fuel consumption against the constraints of aircraft capacity and center of
gravity. We introduce a comprehensive model that integrates air palletization, weight
and balance, pickup and delivery, and vehicle routing into a unified framework. Through
rigorous mathematical modeling and the development of innovative sequential and
parallel heuristics, our approach minimizes both ground handling times and fuel
consumption, directly contributing to reduced carbon emissions. Our methods were
validated through extensive testing with both commercial solvers and metaheuristics,
using data reflective of real-world scenarios from the Brazilian Air Force. These data
contain a variety of items, like aircraft components and supplies, medication, and other
supplies for remote population needs in isolated regions in the Brazilian territory, as well
as for resupplying the defense forces near the Brazilian border. Despite issues such as
incomplete data and historical records, our findings demonstrate the practical
applicability and adaptability of our solutions to a broad range of logistical and
optimization challenges. This research not only advances the field of aerial logistics but
also offers adaptable tools for tackling diverse optimization problems across military and
civilian contexts, promising significant improvements in efficiency and sustainability.
Future work may explore the integration of real-time data analytics to further refine
loading and routing efficiency.
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1 Introduction

We explore a common problem in transport aviation, as there are risks of cargo
unbalancing, cost-inefficient tours, and incorrect deliveries due to the urgency required on
loading for rapid take-off and mission accomplishment. This work addresses the problem of
planning the loading and routing of an aircraft according to weight and balance principles,
fuel economy, agility in assembling pallets under safety requirements, and also serving
multiple nodes in an efficient tour, attending simultaneous pickup and delivery demands at
intermediate airfields, until the return to the base. This problem requires a comprehensive
solution that takes into account various factors such as minimal possible fuel consumption,
efficient use of resources, and adherence to safety protocols. Additionally, the solution
should aim to minimize turnaround time at intermediate airfields to ensure timely delivery
and avoid any disruptions in the mission’s accomplishment.

We identified the limitations of existing approaches and developed a novel heuristic,
Shims, with low search times, ideal for multi-leg airlift planning. Shims considers factors
like weight and balance, fuel efficiency, and efficient pallet assembly. Shims is particularly
well-suited for real-world scenarios with time constraints due to its exceptionally low
search times.

The Air Cargo Load Planning Problem (ACLPP) was recently defined by (BRANDT;

NICKEL, 2019, p. 71) as the composition of four subproblems: Aircraft Configuration
Problem (ACP), Build-up Scheduling Problem (BSP), Air Cargo Palletization Problem
(APP), and Weight and Balance Problem (WBP). The authors meticulously analyzed
the air freight load planning problem, identifying its subproblems and areas for further
research. They also discussed the implications of their findings for air cargo load planning
practices, suggesting ways to enhance operations and outlining the potential benefits of
implementing their model and algorithm in real-world scenarios.

(MESQUITA; SANCHES, 2024) proposed a rapid solution method for this problem and
introduced the first mathematical model of ACLP+RPDP, a complex system comprising
four well-known NP-hard problems. Additionally, they developed a comprehensive process
for solving these connected problems. However, their work lacked parallel algorithms for
enhanced computational efficiency and did not model 3-D packing solutions. In this thesis,
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we delve deeper into their approaches, introducing advancements aimed at improving
performance and incorporating new functionalities by considering more detailed real-world
intricacies.

In this work, we define Palletization as a logistical procedure that entails arranging
goods on a pallet to secure and consolidate the load, facilitating its transit, storage,
handling, and distribution. We refer to palletized items as Packed items or carga
consolidada in Brazilian Portuguese.

As the problem of this research extends the complexities of ACLPP, (MESQUITA;

SANCHES, 2024) named it Air Cargo Load Planning with Routing, Pickup and Delivery
Problem (ACLP+RPDP).

In this chapter, we emphasize the importance of acquiring efficient solutions. We
present an overview of the problem structure in both civil and military contexts and
provide a glimpse into real operational scenarios. These include the network cost
structure, operational premises, and the two aircraft sizes under study. Additionally, we
discuss considerations and calculations related to cost increases from Center of Gravity
(CG) displacement.

In the next chapter, we integrate these elements with the mathematical model of the
problem. The mathematical model allows us to analyze and optimize various aspects of the
problem, such as the allocation of resources, scheduling, and decision-making processes.
We can generate insights and recommendations by incorporating real-world data and
constraints into the model, which can lead to more efficient and cost-effective solutions.
Additionally, we discuss the potential implications and benefits of implementing these
solutions.

1.1 Problem relevance

Solving ACLP+RPDP is critical because it enhances the loaded items’ strategic score
(profit or other client-specific parameters). This optimization not only saves time and
effort by eliminating trial-and-error in the loading process, but also ensures safety through
overall load balance. Additionally, it ensures the correct pickup and delivery of items to
their intended destinations, while identifying the most fuel-efficient routes, taking into
account potential imbalances in cargo distribution.

The current APP process often relies on outdated methods, such as pen-and-paper
or spreadsheet entries, combined with trial-and-error during pallet construction. This
approach is labor-intensive, costly, and typically fails to yield optimal results. It may also
pose safety risks due to the ongoing pressure to quickly resolve complex issues under time
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constraints.

Safety and Efficiency in Air Cargo Transport

Regarding WBP, we can draw attention to a significant study by G.W.H. van Es on
safety incidents between 1970 and 2004:

The risk of having a weight and balance-related accident with cargo flights is 8.5
times higher than with passenger flights; and that there were various factors
involved in weight and balance accidents/incidents such as errors in the load
sheet, shifting of cargo, incorrect loading, etc. (ES, 2007, p. 22).

Therefore, it becomes clear the importance of a decision support system, that is, an
embedded algorithm to quickly and efficiently generate safe loading plans for immediate
take-off and mission accomplishment.

Another important issue is managing fuel consumption. To get an idea of the influence
of CG displacement on fuel consumption, (MONGEAU; BES, 2003, p. 140) report that:

A displacement of the CG of less than 75 cm in a long-range aircraft yields,
over a 10,000 km flight, a saving of 4,000 kg of fuel.

This reinforces the importance of balancing cargo.

Challenges and Technological Solutions in Logistics Management

The purchasing department of an organization often acquires supplies from major
capitals domestically and internationally to meet the company’s needs. The requesting
organizations must receive these materials within the stipulated deadlines. Meanwhile,
another department responsible for component maintenance may need to expedite items
to supporting contractors, necessitating efficient transportation solutions.

The organization’s logistic management system typically documents transportation
demands. This system provides excellent visibility into transport needs, aiding in
resource planning and allocation. It enables real-time tracking of shipments to ensure
that materials reach their destinations on time and in optimal condition. The system
also facilitates access to transportation demand data, allowing the company to identify
and address any bottlenecks or inefficiencies in the logistics process.

However, the sheer volume of information that cargo terminal managers must process
makes it challenging for humans to develop effective and secure transportation plans
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without technological assistance. As a result, technology plays a critical role by enabling
operators at each location to input existing loads with their destinations and other
parameters, ensuring that logistical operations are both efficient and secure.

Economic and Safety Implications of Current Practices

Inefficient transport plans significantly drive up costs by necessitating extra routes,
increasing travel distances, and sometimes resulting in deliveries to incorrect destinations.
Furthermore, unbalanced cargo can lead to increased fuel consumption because higher
pitch angles cause increased drag.

Despite available technology, many airlines still rely on manual aircraft loading and
balancing procedures. For CG computation and constraint testing, loadmasters primarily
use simple computer-aided tools, but often resort to time-consuming, experience-based
planning. Since load plans are typically finalized about an hour before takeoff, this manual
approach can lead to delays.

Such practices pose significant safety risks. Improperly balanced cargo can severely
impact flight safety. A forward-shifted CG can result in a nose-down attitude,
compromising safe takeoff, whereas a rearward CG can cause a nose-high attitude,
making it difficult to recover from a stall and land safely. Maintaining the CG within
safe operational limits is therefore crucial.

To mitigate these economic and safety risks, it is essential to adopt a more rational
decision-making process that leverages advanced technology for planning and execution.
This is particularly important given the high costs of fuel, lubricants, and fleet
maintenance, as well as the potential costs associated with outsourced transport and the
risks to operational integrity from failing to deliver critical materials or accidents caused
by unbalanced loads.

1.2 Thesis objective

The primary goal of this thesis is to develop a smart decision-making tool that enables
safe and efficient transportation planning. This tool will feature a solution process with
minimal search time, be suitable for planning multi-leg airlift operations, and be adaptable
for integration into a cloud-based or desktop-hosted decision support system.

Additionally, the project aims to optimize the distribution of loads on pallets within
the cargo bay. By doing so, it seeks to maintain aircraft balance, maximize total score, and
minimize fuel consumption during airlifts. We design the resulting tour, pallet building,
and arrangement plans to ensure flight safety, enhance ground operations efficiency, and
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guarantee the correct delivery of each item to its intended destination.

This objective builds on the foundations laid in (MESQUITA; SANCHES, 2024), where
initial problems were addressed by this author and his advisor. The current work
expands on those findings by incorporating 3-D packing solutions and parallel processing
techniques into the developed algorithms, addressing gaps identified in the previous
research.

1.3 Some premises on the problem

(ROESENER; BARNES, 2016) argue that commercial airlift operations primarily aim
to balance efficiency (generating revenue) and effectiveness (maintaining customer
satisfaction), with a clear focus on profit. Conversely, military airlift operations
prioritize effectiveness (ensuring timely delivery of necessary goods and equipment)
while also striving to spend government funds wisely.

Distinct operational goals necessitate differing approaches to problem formulation and
resolution in commercial versus military airlift scenarios. This distinction, emphasized in
their work, highlights the unique objectives of profit in commercial operations versus
effectiveness in military logistics.

In military operations, Unit Load Devices (ULDs) are often standardized, simplifying
the Aircraft Configuration Problem (ACP) as pallet positions can be predetermined before
loading. The Build-up Scheduling Problem (BSP) in military settings typically features
pre-established schedules, with items prepared for palletization in advance.

In commercial settings, ULDs may vary significantly in shape, complicating the task
of minimizing CG displacement. Additionally, aircraft with multiple cargo doors can
facilitate more efficient cargo sequencing.

Economically, the optimal choice often involves selecting the most efficient route-not
necessarily the shortest-that maximizes the benefit-cost ratio. The core challenge
addressed in this study is the integration of three classic problems: the Air Cargo
Palletization Problem (allocation and packing of items to maximize scoring), the Weight
and Balance Problem (ensuring cargo balance constraints are met), and the
Simultaneous Delivery and Pickup Problem (managing cargo at each node for both
delivery and pickup). This integrative approach aims to create an efficient
transportation plan that addresses these varied challenges.

As it is an extremely complex problem, we decided to simplify a few aspects as
approached by (LURKIN; SCHYNS, 2015):

a. We considered a unique ULD type with an amount and predefined positions in the
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aircraft, although this model may be generalized for other scenarios. The items to
be allocated to these ULDs in each leg of the flight plan may be characterized by
weight, dimensions, scores, and previously known destinations.

b. We considered that a pallet which has not yet gotten to its destination may receive
more items, although it is known that these operations of removing restraining nets
may increase handling time.

c. Finally, we also disregarded hazardous products, which eventually could be treated
as high-scoring items in a future work.

Pallet builder technicians are highly skilled at assembling flat pallets, maintaining a
centered and low center of gravity, and securing loads with specialized tight nets.
Despite their invaluable expertise and strict adherence to safety regulations, we must
explore technological advancements to improve these processes. Therefore, we aim to
develop a 3-dimensional packing algorithm that meets the operational demands for
runtime performance.

By ensuring more efficient pallet packing, maximizing space utilization, and enhancing
stability, this algorithm will complement the technicians’ skills. It will also standardize
the pallet assembly process, minimizing the potential for human error and ensuring
consistency across all operations.

Throughout this text, we refer to a Packed as a set of items destined for the same
location, stacked on a pallet, and secured with a restraining net. Each Packed is treated
as a unique entity, possessing the combined attributes of its components, such as the sum
of individual scores, weights, and volumes. See Figure 1.1.

Figure 1.1 – Packed on a pallet inside a Boeing C-17
Source: From Wikimedia Commons, the free media repository
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It is important to highlight that the Packed must stay on board until they reach their
destination to maintain accuracy in pickup and delivery operations.

Informally, ACLP+RPDP can be summarized as follows:

max (items’ score sum) / (tour cost) of picked up and delivered items at each node on a tour.

s.t. → For each leg along a route, the set of unvisited nodes is updated.

→ Packed are composed at each node and remain on board until their destinations.

→ Only items destined for the remaining flight legs will be loaded.

→ Weights and volumes correspond to all the packed items on a pallet with the same
destination.

→ Double-lane-decked larger aircraft have their lateral torque limited to the operational
range.

→ The longitudinal torque operational range is applied to any aircraft size.

→ Larger aircraft have payloads typically larger than the overall pallet weight capacities.

→ Weight and volume limitations (pallets or aircraft) must be respected.

→ In a node, an item may be included in at most one pallet.

→ In a node, Packed must be included in one pallet if the destinations are the same.

→ Pallets destined for the next node should be put as near as possible to the ramp door.

→ Items allocated to the pallet must fit on the pallet before the packing operation.

There is not, to our knowledge, any work in the literature that solves this complex
problem.

1.4 Scenarios envisaged for the problem

The ULD (or pallet) on which this work is based is the 463L Master Pallet, a common
size platform for bundling and moving air cargo, and serves as the primary air cargo
pallet for more than 70 air forces and transportation companies flying mainly on the
Lockheed C-130 Hercules and other types of cargo lifters (Boeing CH-47 Chinook, Casa
CN-235, Embraer KC-390, Lockheed C-17 Globemaster, Boeing C-767, Douglas DC-10,
Boeing 747, Leonardo C-27 Spartan, Airbus A330 MRTT, and A400M). This ULD has
a capacity of 4500kg, is equipped for locking pallets into cargo aircraft rail systems, and
includes tie-down rings to secure nets and cargo loads, which in total weighs 140kg. For
more information, see www.463lpallet.com.

Another important issue is that the airplane has some pallets that will remain on
board for the next leg in a sequence of delivery and pickup points in a tour. This means
that pallets eventually have to be reallocated, guaranteeing a feasible solution regarding
cargo balancing.
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(LURKIN; SCHYNS, 2015) produced an innovative work: they were the first to model
the ACLPP, which is simultaneously a Weight and Balance Problem (WBP) and a
Sequencing Problem (SP), as well as two flight legs, including pickups and deliveries at
the intermediate airport. Some of their suppositions are:

(i) Only items destined for the same node are loaded in each Unit Load Device (ULD);
and

(ii) ULDs that have not yet reached their destinations are not altered or moved in the
intermediate legs of the flight plan.

However, their approach has a limitation. Since the flight plan is predetermined, it
might not consider the most efficient routes. Instead, their method focuses solely on
positioning Unit Load Devices (ULDs) to minimize fuel consumption.

The model of the problem in this work could be viewed as a generalization of their
work, as it deals with more real-world constraints.

Nodes network

Brazil is Latin America’s largest economy, and the country’s vast size necessitates
the use of aviation to connect its many regions, from rural towns to cosmopolitan state
capitals. This is why the country has the continent’s largest air transportation market by
far. As a country with a growing economy, it knows how important airport development
is to reaching its goals of more tourism and international trade.

According to the recent report of (IATA. . . , 2017), the aviation sector contributes with
US$ 18.8 billion to Brazil’s GDP and generates more than 800,000 jobs. With demand set
to double over the next 20 years, the economic contribution of aviation to the Brazilian
economy could increase to more than US$ 8.8 billion per year with more than 1.4 million
jobs.

Brazil has 2,499 airports registered by ANAC (National Civil Aviation Agency -
Agência Nacional de Aviação Civil) of which 1,911 are private and 588 are public.
Although it is an immense distribution network, the Brazilian Air Force missions have
always considered 3-5 nodes per planned flight. It is important to emphasize that this
data is not an imposed limitation but a historical fact that we will explore in our
method.

Based on the most recent data available from ANAC, there are 73 airports in Brazil
with dedicated cargo terminals, of which 30 are international airports and 43 are domestic
airports. These airports are located in major cities throughout Brazil, including São Paulo,
Rio de Janeiro, Campinas, Belo Horizonte, Manaus, and Curitiba (see Table 1.1).
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Table 1.1 – Top 10 airports with the most cargo handled in Brazil in 2022

Airport IATA code Cargo handled (tons)

Guarulhos GRU 632,000
Viracopos VCP 415,000
Confins CNF 190,000
Galeão GIG 167,000
Recife REC 82,000
Fortaleza FOR 74,000
Brasilia BSB 69,000
Curitiba CWB 68,000
Porto Alegre POA 65,000
Salvador SSA 57,000

The air cargo sector in Brazil is expected to continue to grow in the coming years,
driven by the country’s growing economy and increasing demand for e-commerce. As a
result, there is likely to be a need for more air cargo terminals in Brazil in the future.

Throughout this work, we have focused on routes involving up to 7 nodes but have
developed a solution capable of efficiently handling up to 15 nodes in less than 20 minutes,
as demonstrated in Table 1.2, Figure 1.2, and Figure 7.1. This capability not only
highlights the solution’s scalability and performance but also ensures its applicability
to larger network scenarios if needed.

The Brazilian Air Force selected these seven nodes due to their high demand and
the urgency of transport deadlines. Private companies recognize these nodes as the most
demanding air cargo hubs. We prioritized these nodes to optimize resources and response
times in high-stakes situations. Alternative transportation methods such as cabotage,
rail, or road more economically serve airports with lower demand. This strategic approach
aligns with the broader goal of utilizing resources where they are most impactful.

Table 1.2 presents a general example of nodes run by the Brazilian Air Force in its
logistics missions, which are part of the testing scenarios of this work.
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Figure 1.2 – Nodes network for testing
Source: the author

Table 1.2 – Distances between some airports (km)

Node ID 0 (base) 1 2 3 4 5 6
Airport Guarulhos Galeão Salvador Confins Curitiba Brasilia Recife
IATA* GRU GIG SSA CNF CWB BSB REC

GRU 0 343 1439 504 358 866 2114
GIG 343 0 1218 371 677 935 1876
SSA 1439 1218 0 938 1788 1062 676
CNF 504 371 938 0 851 606 1613
CWB 358 677 1788 851 0 1084 2462
BSB 866 935 1062 606 1084 0 1658
REC 2114 1876 676 1613 2462 1658 0

*International Air Transport Association (IATA) airport code
Source: the Author, calculated with a tool on www.airportdistancecalculator.com

Operational premises

The word Packed, cited early, is a set of items stacked on a pallet and covered with a
restraining net. It is considered unique for having the same attributes as its components,
whose values are the sum of individual scores, weights, and volumes, and having the same
destination. Packed are commonly used in the logistics and transportation industries to
optimize storage space and ensure secure transportation. This method allows for efficient
handling and tracking of multiple items as a single unit, reducing the risk of damage or
loss during transit.

To keep the cargo safely balanced, all pallet assembly and cargo operations must
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deal with the loaded aircraft torque limitations by keeping the CG within its safe range.
Failure to maintain the center of gravity within a safe range can result in unstable flight
conditions and a potential loss of control. This requires careful planning and the precise
distribution of weight throughout the aircraft to ensure safe balance and stability during
flight.

To guarantee precision in the pickup and delivery operations, the en route Packed
must be guaranteed to remain on board before its delivery point, and all empty pallets
will be assembled with items having the same destinations.

Another challenge is the single cargo door (ramp door). Ideally, pallets closest to
their final destination would be loaded near the door to minimize handling time during
unloading. However, with only one door, all cargo is loaded and unloaded in a stack,
pushing or pulling everything through the same opening. This makes it difficult to
minimize handling time because pallets further from the door may need to be moved
multiple times to access others.

To address this limitation, this work focuses on positioning pallets for the next
destination as close to the ramp door as possible. This helps to minimize re-handling
during the unloading process.

In aircraft with two docking lanes, it may be possible, in some situations, to exchange
pallet positions inside the aircraft in an attempt to minimize handling times. But not
in aircraft with a single cargo lane. In such a case, the exchange of pallet positions may
require the use of external loaders and may require more handling time.

Figure 1.3 – Packed in a two-docking-lanes aircraft
Source: https://www.sacprogram.org/en/Pages/Boeing-C-17-Globemaster-III.aspx

We do not consider oversized cargo in this work. Only cargo that fits on 463L pallets.
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This project focuses on finding the best route for a single aircraft, considering both
benefits and costs. In the future, we might explore challenges of planning routes for
multiple aircraft, either with similar capacities or a mix of different sizes.

Aircraft of this work

We consider many real scenarios with a smaller or larger aircraft with capacities (or
payloads) of 26000kg or 75000kg respectively. In both cases, the torque applied to the
aircraft must keep its CG in the operational range, which corresponds to a percentage of
the Mean Aerodynamic Chord.

Chord is the distance between the leading and trailing edges of the wing, measured
parallel to the normal airflow over the wing (HOUGHTON; CARPENTER, 2003, p.18).

The CG operational range around the CG point is: ±0.556m in the smaller aircraft
and ±1.17m in the larger one (see Figure 1.5).

Figure 1.4 – An aircraft longitudinal cut illustrating the positions of the pallets.
Source: "The KC 390". Embraer Defense & Security. Retrieved 13 July 2016.

Figure 1.5 – A longitudinal cut of the aircraft in Figure 1.4.
Source: the author

Both pallets layouts are represented in Figures 1.6 (smaller aircraft) and 1.7 (larger
aircraft), where pallets are identified by pi. Tables 1.3 and 1.4 show, in both cases,
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the payloads, the CG-limits, and the load limit allowed on each pallet. In these tables,
distances to CG refer to the distances of pallets centroids (in meters) in relation to the
CG of aircraft along the longitudinal axis, which may be negative (fwd) or positive (aft).

In both aircraft, as the ramps are considered to have an inclination of 25 degrees, we
made the necessary correction in the distances to CG of the corresponding pallets.

Another important parameter for travel cost calculations is the aircraft fuel
consumption rate. As it is out of the scope of this work to establish adequate ranges per
aircraft type, we estimated 6 kg/km for the larger and 1.2 kg/km for the smaller aircraft.
We also considered the fuel price as 0.82 US$/kg. These values are used to calculate the
cost matrix based on Table 1.2, the distances to be traveled by both aircraft.

p7 p6 p5 p4 p3 p2 p1

Forward Ramp

Figure 1.6 – Smaller aircraft layout

Table 1.3 – Smaller aircraft parameters

Limits Payload: 26, 000kg limitCG
long: 0.556m

pi p7 p6 p5 p4 p3 p2 p1

Dlong
i (m) -5.10 -2.70 -0.30 2.10 4.50 6.25 8.39

Wi (kg) 4,500 4,500 4,500 4,500 4,500 4,000 3,500
Vi (m3) 13.7 13.7 13.7 13.7 13.7 8.9 6.9

Fuel cost per kilometer ckm = US$ 1.10/km

Maximum weight Wmax = 26,000kg

p17

p18

p15

p16

p13

p14

p11

p12

p9

p10

p7

p8

p5

p6

p3

p4

p1

p2

Forward Ramp

Figure 1.7 – Larger aircraft layout

Although pallets weight and volume capacities are identical, in the aircraft, these
capacities are limited in weight according to their position along the cargo bay. Pallets
on ramp door are more limited in volume due to their proximity to the aircraft ceiling.
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Table 1.4 – Larger aircraft parameters

Limits Payload: 75,000kg limitCG
long: 1.170m limitCG

lat : 0.19m

pi
p17 p15 p13 p11 p9 p7 p5 p3 p1
p18 p16 p14 p12 p10 p8 p6 p4 p2

Dlong
i (m) -17.57 -13.17 -8.77 -4.40 0 4.40 8.77 11.47 14.89

-17.57 -13.17 -8.77 -4.40 0 4.40 8.77 11.47 14.89

Dlat
i (m) 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32

-1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32

Wi (kg) 4,500 4,500 4,500 4,500 4,500 4,500 4,500 3,000 3,000
Vi (m3) 14.8 14.8 14.8 14.8 14.8 14.8 14.8 10.0 7.0

Fuel cost per kilometer ckm = US$ 4.90/km

Maximum weight Wmax = 75,000kg

CG displacement costs

In www.flightdeckfriend.com (accessed in: January 5, 2017), we found some
relevant information regarding CG displacement costs:

The four engines of the Boeing 747 Jumbo Jet burn approximately 10 to 11 tonnes of
fuel an hour when on cruise.

A Jumbo Jet (Boeing 747-400) flying from London to New York burns approximately
70,000 kilograms of fuel. Jet fuel has a specific gravity of about 0.85, which means it takes
up about 82,353 liters.

This would roughly align with a 6-7 hour flight at the mentioned cruise burn rates.
Of course, this rate can vary depending on a variety of factors, including altitude, speed,
and load.

As the straight distance from London to New York is 5,571km and the fuel consumption
is about 70,000kg, 10,000 km would consume 126,000kg of fuel. As 10,000km with an
unbalanced aircraft would consume 4,000kg of fuel (MONGEAU; BES, 2003, p. 140), this
represents an increase of 3.17% fuel burn.

Let’s consider that the larger aircraft of this research have the same fuel
consumption rate as a Boeing 747-400, and fuel burn is linear with CG displacement, so
these percentages would be as stated in Table 1.5.
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Table 1.5 – Increased fuel consumption due to CG displacement.

CG displacement cg (%) Aircraft

75cm 3.17 Boeing 747-400
55.6cm 2.37 smaller aircraft, Table 1.3, limitCG

long

117cm 4.95 larger aircraft, Table 1.4, limitCG
long

cg is the cost increase considered in the mathematical modeling.

The percentages in Table 1.5 are approximate, requiring a specific study for the aircraft
chosen, which is out of the scope of this work.

1.5 Thesis organization

Overall, our goal was to provide a comprehensive understanding of the Air Cargo Load
Planning with Routing, Pickup, and Delivery Problem (ACLP+RPDP) and its practical
implications. By showcasing real operational scenarios and network dimensions, we aimed
to highlight the relevance of efficient solutions in optimizing cargo aircraft operations. Our
analysis also considered the impact of CG displacement on cost increases and introduced
ground handling burdens to further emphasize the complexity of the problem.

This thesis is organized into seven additional chapters: In Chapter 2, we present the
mathematical model, laying the foundational framework for the ACLP+RPDP. Chapter 3
reviews the state of the art in solving problems similar to or related to the ACLP+RPDP,
providing a context for the research. In Chapter 4, we introduce the solution approaches
and a new heuristic developed specifically for the ACLP+RPDP. Chapter 5 details the
integration of computer parallelism and 3-D packing techniques, enhancing the efficiency
and scope of our solutions. In Chapter 6, we describe testing scenarios and item instances
generation, including preparation procedures before applying any solution method, and
search for optimal results using integer programming. Chapter 7 compares and discusses
the results, addressing the issues encountered with each method. The conclusions and
future research directions are presented in Chapter 8.



2 Mathematical model

Given the assumptions and parameters described in the previous chapter, we are ready
to present the integer programming model. ACLP+RPDP has the objective function
(2.1), and the calculus equations (2.2) to (2.9) subject to constraints (2.12) to (2.21),
which will be described below.

2.1 Objective function

Let ΠK = {π : {1, . . . , K} → {1, . . . , K}} be the set of K! permutations, which
correspond to all possible tours that have node 0 as origin and end, passing through the
other K nodes.

Let πk be kth node of the tour π, 1 ≤ k ≤ K. In this way, the tour π is described as
{0, π1, . . . , πK , 0}. For ease of notation, we can define π0 = πK+1 = 0.

Prioritizing the most relevant items is crucial for any company. Whether the goal is
to maximize profit or any other parameter, it is equally critical to minimize the overall
cost. So, we chose a simple objective function that can simultaneously attend to both
objectives.

The objective of ACLP+RPDP is to find the permutation π ∈ ΠK , with the
corresponding allocation of items on the pallets at each node, that maximizes the
function in equation 2.1, where s̃π is the total score of transported items, and c̃π is the
total cost of fuel consumed.

max
π∈ΠK

f(π) = s̃π/c̃π (2.1)

2.2 Problem structure

In these descriptions, we use the values assigned in tables 1.2, 1.3, and 1.4.
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Problem structure description

Notation Description

L = {0, π1, π2, . . . , πK} a set with the K + 1 nodes

Lk = {πk+1, . . . , 0} the set of remaining nodes when the aircraft is in the position k.

d(a, b) the distance from node a to node b, where 0 ≤ a, b ≤ K. By definition,
d(a, a) = 0,∀a.

C = [ca,b] the cost matrix of flights, where ca,b = ckm ∗ d(a, b), being ckm the cost per
kilometer for the considered aircraft.

M = {1, 2, . . . , m} set of m empty pallets assigned to specific positions within the aircraft. m

may be equal to 7 or 18, depending on the size of the aircraft. Each pallet
i, 1 ≤ i ≤ m, has weight capacity Wi, volume capacity Vi, longitudinal
distance to the CG of aircraft Dlong

i , lateral distance to the centerline of
aircraft Dlat

i , and a destination T πk
i ∈ Lk.

Nπk = {1, . . . , nπk} set of nπk items available for loading at node πk, 1 ≤ j ≤ nπk , 0 ≤ k ≤ K.
Each item has the following attributes: score sj , weight wj , volume vj , and
destination toj ∈ Lk.

N =
⋃

0≤k≤K Nπk set of items in all nodes along a tour.

Qπk = {1, . . . , mπk} set of mπk ≤ m Packed aπk
q that remain on board at node πk, 1 ≤ q ≤ mπk ,

0 ≤ k ≤ K. aπk
q has the same attributes of the items. By definition, m0 = 0,

and therefore Q0 = ∅. Packed that were destined to node πk are unloaded
when the aircraft arrives at this node, that is, they are not considered in
Qπk .

2.3 Decision variables

Let Xπk
ij and Y πk

iq be binary variables, where 1 ≤ i ≤ m, 1 ≤ j ≤ nπk , 1 ≤ q ≤ mπk

and 0 ≤ k ≤ K.

→ Xπk
ij = 1 if the item j at node πk is assigned to the pallet i, and 0 otherwise.

Other pallets may receive this item, or it may not be assigned at all, reserving it for other
transport missions.

→ Y πk
iq = 1 if the Packed q at node πk is assigned to pallet i, and 0 otherwise. The

eventual relocation of the Packed that remain on board for cargo balancing purposes
makes this variable crucial.
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2.4 Allocation graph

Allocations of items or Packed to the pallets in node πk can be seen as a bipartite
graph Gπk(V πk , Eπk), where:

→ V πk = M ∪Nπk ∪Qπk

→ Eπk = ENπk ∪ EQπk

→ (i, j) ∈ ENπk if Xπk
ij = 1, where i is a pallet and j is a item at node πk

→ (i, q) ∈ EQπk if Y πk
iq = 1, where i is a pallet and q is a Packed at node πk

2.5 Calculus equations

Calculus equations descriptions

Symbol Equation Description

s̃π 2.2 the sum of the scores of the items loaded on the aircraft throughout the tour
π.

τπk 2.3 the longitudinal torque applied by the loaded pallets at the node πk, in
proportion relative to the highest torque supported by the aircraft.

c̃π 2.4 the cost of the total fuel consumed in the tour π due to the distances travelled
and the CG longitudinal deviations. cg is the percentage cost increase due to
the CG deviation.
In our experiments, we found that the magnitude of the lateral torque
was always very small, so we decided to ignore it in the fuel consumption
calculation in each pallet.

L0 2.5 all nodes to be visited.

Lπk 2.6 the set of not visited nodes when staying in πk.

m0 2.7 At the beginning of tour π, there are no packed contents.

ϵπk
t 2.8 the lateral torque applied by the loaded pallets at the node πk, in proportion

relative to the highest torque supported by the aircraft.

ϵπk
a 2.9 the Packed lateral torque.

Wmax 2.10 The maximum weight is the minimum between the sum of pallets weights
capacities and the aircraft payload.

We have the following calculation equations:

s̃π =
K∑

k=0

m∑
i=1

nπk∑
j=1

Xπk
ij × sj (2.2)
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τπk =
m∑

i=1

[
Dlong

i ×
( nπk∑

j=1
Xπk

ij ×wj+
mπk∑
q=1

Y πk
iq ×wq

)]/
Wmax×limitCG

long; k ∈ {0, . . . , K} (2.3)

c̃π =
K∑

k=0

[
cπk,πk+1 × (1 + cg × |τπk |)

]
(2.4)

L0 = L (2.5)

Lπk = Lπ(k−1) − {πk}; k ∈ {1, . . . , K} (2.6)

m0 = 0 (2.7)

ϵπk
t =

m∑
i=1

[
Dlat

i ×
nπk∑
j=1

(
Xπk

ij ×wj× (i%2)−Xπk
ij ×wj× (i+1)%2

)]/
Wmax× limitCG

lat (2.8)

ϵπk
a =

m∑
i=1

[
Dlat

i ×
mπk∑
q=1

(
Y πk

iq ×wq× (i%2)−Y πk
iq ×wq× (i+1)%2

)]/
Wmax× limitCG

lat (2.9)

Wmax = min(Payload,
m∑

i=1
Wi) (2.10)

2.6 Constraints

Finally, we can consider the constraints at each node πk:

s.t.:

→ The longitudinal (2.11) and the lateral (2.12) torques must be within the limits of
the aircraft.

|τπk | ≤ 1; k ∈ {0, . . . , K} (2.11)

|ϵπk
t + ϵπk

a | ≤ 1; k ∈ {0, . . . , K} (2.12)

→ ϵπk
t denotes the lateral torque caused by the items (2.8) and ϵπk

a the lateral torque
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produced by the Packed (2.9).

→ The items allocated to each pallet cannot exceed its weight (2.13) and volume (2.14)
limits.

nπk∑
j=1

Xπk
ij × wj +

mπk∑
q=1

Y πk
iq × wq ≤ Wi; i ∈ {1, . . . , m} (2.13)

nπk∑
j=1

Xπk
ij × vj +

mπk∑
q=1

Y πk
iq × vq ≤ Vi; i ∈ {1, . . . , m} (2.14)

→ The sum of the pallets weight capacities must be less or equal the aircraft’s payload
(2.10 and 2.15).

m∑
i=1

(
nπk∑
j=1

Xπk
ij × wπk

j +
mπk∑
q=1

Y πk
iq × wπk

q ) ≤ Wmax; k ∈ {0, 1, . . . , K} (2.15)

→ An item must be assigned to any pallet at most once or may not be assigned.

m∑
i=1

Xπk
ij ≤ 1; j ∈ {1, . . . , nπk} (2.16)

→ Packed that have not yet reached their destination must remain on board (2.17).
Some balancing procedures may cause the Packed to be moved to another pallet.

m∑
i=1

Y πk
iq = 1; toq ∈ Lπk ; q ∈ {1, . . . , mπk} (2.17)

→ Items on the same pallet must have the same destination as the pallet (2.18, 2.19).

Xπk
ij ≤ Xπk

ij × (T πk
i − toj + 1); i ∈ {1, . . . , m}; j ∈ {1, . . . , nπk} (2.18)

Xπk
ij ≤ Xπk

ij × (toj − T πk
i + 1); i ∈ {1, . . . , m}; j ∈ {1, . . . , nπk} (2.19)

→ If there is a Packed on the pallet, they must have the same destination (2.20, 2.21).

Y πk
iq ≤ Y πk

iq × (T πk
i − toq + 1); i ∈ {1, . . . , m}; q ∈ {1, . . . , mπk} (2.20)

Y πk
iq ≤ Y πk

iq × (toq − T πk
i + 1); i ∈ {1, . . . , m}; q ∈ {1, . . . , mπk} (2.21)



3 Literature review

Considering air cargo transport, Table 3.1 lists the main works in the literature and
the corresponding subproblems addressed, most of them dealing with WBP.

We also indicate whether the dimensions of the items were taken into account (3-D
or 2-D) and which solution method was used: heuristics (H), integer programming (IP),
linear programming (LP), or parallel heuristics (PH). We also indicate if the minimization
of loading and unloading costs (MLU) was included in the work scope.

Table 3.1 – Air cargo transport: literature, problems and features

Research APP WBP MLU SPDP TSP 2-D 3-D H IP LP PH

(LARSEN; MIKKELSEN, 1979) . ⋆ . . . . . ⋆ . . .

(BROSH, 1981) . ⋆ . . . . . . . ⋆ .

(NG, 1992) . ⋆ . . . . . . ⋆ . .

(HEIDELBERG et al., 1998) . ⋆ . . . ⋆ . ⋆ . . .

(MONGEAU; BES, 2003) ⋆ ⋆ . . . . . . ⋆ . .

(FOK; CHUN, 2004) . ⋆ . . . . . . ⋆ . .

(KALUZNY; SHAW, 2009) . ⋆ . . . ⋆ . . ⋆ . .

(VERSTICHEL et al., 2011) . ⋆ . . . . . . ⋆ . .

(LIMBOURG et al., 2012) . ⋆ . . . . . . ⋆ . .

(ROESENER; HALL, 2014) ⋆ ⋆ . . . . ⋆ . ⋆ . .

(VANCROONENBURG et al., 2014) ⋆ ⋆ . . . . . . ⋆ . .

(LURKIN; SCHYNS, 2015) . ⋆ ⋆ ⋆ . . . . ⋆ . .

(ROESENER; BARNES, 2016) . ⋆ . . . . . ⋆ . . .

(PAQUAY et al., 2016) ⋆ . . . . . ⋆ . ⋆ ⋆ .

(PAQUAY et al., 2018b) ⋆ . . . . . ⋆ ⋆ . ⋆ .

(CHENGUANG et al., 2018) . ⋆ . . . ⋆ . ⋆ . . .

(WONG; LING, 2020) ⋆ ⋆ . . . . . . ⋆ . .

(WONG et al., 2021) ⋆ ⋆ . . . . . . ⋆ . .

(ZHAO et al., 2021) . ⋆ . . . . . . ⋆ . .

(ZHAO et al., 2023) ⋆ ⋆ . . . . . ⋆ . . .

(MIGUEL et al., 2023) . ⋆ . . . . . . ⋆ . .

(MESQUITA; SANCHES, 2024) ⋆ ⋆ . ⋆ ⋆ . . ⋆ ⋆ . .

This work ⋆ ⋆ ⋆ ⋆ ⋆ . ⋆ ⋆ ⋆ . ⋆

As to the ⋆ symbol, it indicates that, except for the MIP solver, hybrid heuristics with
IP procedures were used to compose the other solution methods (algorithms, heuristics,
and metaheuristics).



CHAPTER 3. LITERATURE REVIEW 33

As can be seen, so far (LURKIN; SCHYNS, 2015) is the only work that simultaneously
addresses an air cargo (WBP) and a simultaneous pick-up and delivery problem (SPDP)
subproblem. Although it is innovative, strong simplifications were imposed by the authors:
in relation to loading, APP was ignored; with regard to routing, it is assumed a pre-defined
flight plan is restricted to one destination. It is important to note that these authors
consider an aircraft with two doors, and the minimization of loading and unloading costs
(MLU) at the intermediate node was modeled through a container sequencing problem.

Referring directly to this work, (BRANDT; NICKEL, 2019, p. 409) comment: However,
not even these subproblems are acceptably solved for real-world problem sizes, or the models
omit some practically relevant constraints.

3.1 Solved WBP only

(LARSEN; MIKKELSEN, 1979) developed an interactive, computer-based procedure for
solving the vehicle loading problem encountered when loading containers and pallets into
an aircraft. They model with nonlinear programming and solve with heuristics, apply
their solution method to a Boeing 747, handle seven different containers or pallets that
must be reallocated to keep ground stability and balance, minimize handling time by
changing pallet positions as little as possible, and consider two legs (one intermediate
airport).

Their work is a foundational effort that our more contemporary and nuanced approach
builds upon, especially with regard to computational methods, the variety of objectives
considered, and potential real-world applications. The present author’s approach not
only handles ground stability but also flight stability and balance. Their problem is more
about optimizing the existing space and weight distribution for a given aircraft, without
the additional complexities of routing and delivery at multiple points within a network.

(BROSH, 1981) assumed a large number of similar cargo types, leading to a continuous
optimization problem. He employed a more comprehensive model with linear constraints,
taking into account the aircraft’s center of gravity (CG) and its weight. Since the CG
constraints became nonlinear due to weight distribution, he solved them as a series of
simpler linear optimization problems.

This work’s approach uses simpler constraints for the center of gravity, focusing
on acceptable forward and backward limits. This simplifies the model by keeping the
constraints linear, possibly making the problem easier to solve.

(NG, 1992) reports a multicriteria optimization approach to aircraft loading. Only
pallets assembled by experienced loadmasters are employed in the optimization
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procedure. The model provides timely planning and improves airlift support for combat
operations. It solves a WBP with pallets in fixed positions, maximizes volume, solves a
cargo dropping sequence with 20 different items, handles multicriteria optimization with
integer programming, and is applied to a C-130 aircraft by the Canadian Air Force.

(HEIDELBERG et al., 1998) approached the airlift loading problem with WBP as a 2-
dimensional bin packing problem (BPP), ignoring the height dimension and using the
length and width of the cargo pallets and the aircraft’s cargo bay. The author indicated
that the classical methods of BPP are inadequate for aircraft loading because they ignore
aircraft CG concerns and pallet volume. In this work’s approach, pallets are fixed in
number and position.

They address the airlift loading problem through a 2-dimensional bin packing
approach, focusing on length and width dimensions while omitting height. This
simplification underscores a challenge in classical bin packing methods, which typically
do not consider the center of gravity (CG) and pallet volume-critical factors in aircraft
loading. The approach assumes a fixed number and position of pallets, which
streamlines the complexity of the problem to two dimensions.

(FOK; CHUN, 2004) developed a web-based application to first perform long-term
forecasting based on an analysis of historical data, and then, secondarily, operational
load planning with mathematical optimization. The container load planning is usually
done roughly 2 hours before departure, when all the details of the cargo are expected to
be present. They aim to make efficient use of space and load balancing, and they receive
a set of filled containers to be conveniently allocated in the cargo bay.

(KALUZNY; SHAW, 2009) solve the problem of determining the arrangement of a set of
items in a cargo hold that optimizes the load balance. Items are modeled as rectangles with
specified dimensions, masses, and center of gravity offsets. The main decision variables
determine the orientation and placement of a given set of items. The objective function can
be chosen to minimize the deviation of the center of gravity from the target position or to
maximize the function of the items loaded. Like (HEIDELBERG et al., 1998), this approach
does not palletize items. Boxes are arranged in the cargo bay, and a 2-D packing problem
is solved.

(VERSTICHEL et al., 2011) solve the WBP by selecting the most profitable subset of
containers to be loaded into an aircraft. An integer programming approach to the WBP
was introduced. Their aim was to increase the value of loaded cargo and decrease deviation
from the optimal center of gravity. The same objective as (KALUZNY; SHAW, 2009), but
containers are considered already filled, i.e., they do not palletize items.

(LIMBOURG et al., 2012) developed a mixed-integer program designed for optimally
loading a set of pallets into a compartmentalized cargo aircraft, specifically the Boeing



CHAPTER 3. LITERATURE REVIEW 35

747. Their approach aimed to optimally position the CG by rearranging pallets. In this
case, containers are distributed in diverse areas of the same cargo bay.

On the other hand, this work simply positions the CG into its permitted range with
the sole objective of maximizing the cargo utility score. As long as the CG deviation
of a workable solution is as low as it can go, there won’t be any safety issues because
fly-by-wire aircraft with automatic trimming take care of the longitudinal stability. This
should also make the plane able to carry more cargo.

(ROESENER; BARNES, 2016) proposed a Tabu Search application to solve the Dynamic
Airlift Loading Problem (DALP). Given a set of palletized cargo items that require
transportation between two ports in a given time frame, DALP seeks to partition the
pallets into aircraft loads, select an efficient and effective subset of aircraft, and assign the
pallets to allowable positions on those aircraft. Their approach is concerned with more
than one aircraft departing from the same node rather than with the simultaneous pickup
and delivery of a single aircraft along a route.

In the work of (CHENGUANG et al., 2018), various cargoes are loaded, in an appropriate
manner, into various kinds of transport aircraft with constraints on volume, weight, and
gravity center. A new hybrid genetic algorithm (GA) is proposed to solve the multi-
constraint loading problem of transporting aircraft while consuming the least amount
of fuel. An optimization algorithm is applied to optimize single-aircraft loading in GA
decoding, and the procedure of hybrid GA is summarized for the multi-aircraft loading
issues. In the case study, eight kinds of cargo are distributed among three different aircraft.

As a continuation of this work, a future article will address these two final approaches
to using multiple aircraft.

(ZHAO et al., 2021) addressed the WBP with CG envelope constraints for air cargo
transportation and considered both the problem of maximizing profits by selecting ULD
from a larger number of ULD for an aircraft and the problem of optimizing the CG
by locating each ULD in an appropriate position within the aircraft’s cargo bay. They
provide an integer programming model for the WBP with features of the knapsack and
assignment problems combined. In terms of WBP, their approach is similar to this work.

3.2 Solved APP only

(CHAN et al., 2006) worked on a case study with heterogeneous pallets, and their
method generated the loading plan for each pallet, aiming to minimize the total cost of
shipment. Their work did not present any approach regarding the CG of aircraft or cargo
balancing. They also did not deal with pallet arrangement in the cargo bay but rather
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pallet completion through a 3-D bin packing heuristic. Their solution is of great relevance
in commercial and industrial applications, where cargo items tend to be less dense.

(PAQUAY et al., 2016) discuss the problem of optimizing the loading of a set of strongly
heterogeneous boxes into commercial aircraft containers with the goal of minimizing the
unused volume within the container. They include pallet center of gravity considerations
in their formulation but do not deal with simultaneous en route pickup and delivery.

(ROESENER; HALL, 2014) formulated a 3-D bin packing problem for mounting
containers in specific positions within aircraft but also did not deal with simultaneous
pickup and delivery en route.

3.3 Solved PDP only

(MESQUITA; CUNHA, 2011) present a proposal for a solution to a problem of the
Brazilian Air Force (FAB), which consists of defining transport routes with simultaneous
pick-up and delivery from a central distribution terminal located in Rio de Janeiro. A
solution method based on the Scatter Search metaheuristic integrated with the Variable
Neighborhood Descent is proposed as an improvement method. This work does not
consider pallet loading, CG displacement costs, or cargo balancing.

(NACCACHE et al., 2018) describe an extension of the pickup and delivery problem
with multi-pickups, then propose a vehicle flow formulation with time windows and an
adaptive large neighborhood search algorithm tailored for this problem. They formally
describe, model, and solve this in the field of pickup and delivery vehicle routing. Likewise,
they solve the problem via branch-and-bound and a heuristic hybrid adaptive large
neighborhood search with improvement operations. Their method is compared to the
exact one to show how well it works.

According to (ÖZTAs; TUs, 2022), the vehicle routing problem with pick-up and delivery
is NP-hard, which means that exact methods fail to find optimal solutions for large-scale
instances in a reasonable amount of time. Their study aims to solve it using a hybrid
algorithm combining iterated local search, variable neighborhood descent, and threshold
acceptance metaheuristics. The proposed algorithm’s main framework is Iterated Local
Search is the main framework of the proposed algorithm. Since vehicle routing problems
with simultaneous pickup and delivery carry out both pick-up and delivery operations,
the amount of load in the vehicle changes after each customer visit.

It is important to highlight that in (ÖZTAs; TUs, 2022) the fluctuation in load affects
the feasibility of the routes. The distances between visited locations on a route impact
the total cost. The experimental results indicate that the proposed algorithm reaches
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the best-known solution values in a reasonable time for most of the test instances used
for benchmarking in the literature. Although the proposed algorithm seems particularly
successful in small and medium-sized problem instances, this is a novel approach to solving
the PDP.

3.4 Solved WBP and APP

(MONGEAU; BES, 2003) addressed APP and WBP in aircraft to minimize fuel
consumption and satisfy stability and safety requirements. Given a list of containers
with specific weights and volumes, a subset of these containers must be assigned to a
finite number of possible locations. Two objectives are optimized: (1) as much weight as
possible should be loaded, and (2) the resulting CG of the aircraft should be as far aft
as possible to minimize fuel consumption but not behind a limit imposed by stability
requirements.

Differently, in this work, the pallets are planned to be assembled with the previous
knowledge of their positions in the cargo bay in a schedule that fosters the same benefits
as theirs but takes advantage of fine-tuning, as more item-pallet combinations
proportionately provide more opportunities for torque adjustment.

(VANCROONENBURG et al., 2014) accomplished a case study on the Boeing 747-400,
where they solved the Aircraft Weight and Balance Optimization Problem, which
corresponds to APP and WBP in our approach. Their work finds the most profitable
selection from a set of Unit Load Devices (ULDs) to be loaded onto slots where several
cargoes can be stored. As a secondary objective, it minimizes the deviation in the CG of
aircraft. Based on historical data, the authors showed how frequent situations in this
aircraft can be solved through a MIP solver within a 10-minute algorithm run (these
authors used the Gurobi MIP solver).

While their work aims at profitable selection of ULD and minimizing deviation in
the CG, this author’s research has multiple objectives, including a utility score, fuel
consumption, and minimizing costs associated with the drag caused by CG displacement.

(WONG; LING, 2020) provided a mathematical model and optimization tool to aid
in ACLP for an airline. According to the authors, even small improvements in load
planning, such as the optimal allocation and placement of unit load devices to be stowed
in an airplane, can have a significant impact on its operational and financial performance.
Under the constraints of aircraft configuration, dangerous product segregation, weight and
balance, and flight safety, their research attempts to maximize cargo loading profit while
also improving operation efficiency. Their work does not address multi-leg operations
planning.
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(WONG et al., 2021) state that real-time visualization and loading optimization are
becoming increasingly important due to dynamic considerations, including the segregation
of dangerous goods and inherent lithium batteries, weight balancing, and oversize cargo
handling. A closed-loop dynamic air cargo loading digital twin system, integrating a cargo
load plan optimization simulation, a multidimensional immersive virtual reality system,
telematics, and real-time sensors, is proposed for connecting, monitoring, and controlling
the operations in physical and virtual space. A virtual reality system is used to visualize
and experiment with loading procedures. The system uses a feedback loop during sensor
data capture to facilitate the decision-making process on the optimal cargo load plan.
Their work is very creative and will make a big difference in how well air cargo works.

(ZHAO et al., 2023) presented three models that use integer programming for air cargo
planning and weight balance optimization: bi-objective optimization (BOM),
combinatorial optimization (COM), and enhanced combinatorial optimization (IOM).
Considering a Boeing 777F in several scenarios, the tests revealed performance
problems: BOM is fast but produces a large CG deviation; COM offers accurate
optimization but with impractical run times; and IOM provides a balanced solution,
improving speed over COM but requiring high computational demands in some cases.
Although IOM stands out for its effectiveness, all models face trade-offs between speed,
accuracy, and computational efficiency. This work alerted us to potential performance
issues in solution methods.

3.5 Solved WBP and PDP

Currently, (LURKIN; SCHYNS, 2015) is the only work that simultaneously addresses an
aircraft cargo problem and a flight itinerary problem. Although it is innovative, strong
simplifications were imposed by the authors: in relation to the item load, only the WBP
was considered; regarding the flights, it is assumed a travel plan was previously defined
and restricted to two legs (one intermediate node). On the other hand, as these authors
consider an aircraft with two doors, the minimization of loading and unloading costs at
the intermediate node was modeled through a container sequencing problem.

Referring directly to the work of Lurkin and Schyns, Brandt and Nickel comment:
However, not even these subproblems are acceptably solved for real-world problem sizes or
the models omit some practically relevant constraints (BRANDT; NICKEL, 2019, p. 409).
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3.6 Special cases of the Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is the task of finding a route through a given
set of cities with the shortest possible length. The study of this problem has attracted
many researchers from different fields, e.g., mathematics, operations research, physics,
biology, or artificial intelligence (REINELT, 1994, p. 1).

The concept of TSP with Profits, (FEILLET et al., 2005), extends the scope of the
traditional TSP by allowing for the possibility of not visiting all vertices. A profit
accompanies each vertex. The primary goal is to achieve a simultaneous optimization of
both the accumulated profit and the travel expenses. Both of these optimization
requirements are present, either in the objective function or as a constraint. These
authors’ study presents a suggested taxonomy of TSP that incorporates profits and
conducts a comprehensive survey of the relevant existing literature. This study identifies
and compares various classes of applications, modeling approaches, and solution
methodologies, including both exact and heuristic methods.

Their work is similar to this research in terms of profits and costs, except that all
nodes must be visited and the relation score/costs for the trip must be maximized.

(PANTUZA; SOUZA, 2022) state that the prize collection traveling salesman problem
(PCTSP) is a generalization of the TSP in which a tour starting at a root node must
visit a subset of nodes to collect a prescribed amount of the total prize, minimizing the
summation of travel costs and penalties associated with non-visited nodes. It is also
different from our routing problem in that all nodes must be visited.

(BOWEN et al., 2024) work presents a learning method for the pickup-and-delivery TSP
(PDTSP), focusing on finding the shortest tour along a sequence of one-to-one pickup-
and-delivery nodes. Classic OR algorithms for PDTSP are challenging to scale to large
problems. Reinforcement learning (RL) is used to restrict solution search within a feasible
space. The method is compared to classic OR algorithms and existing learning methods,
showing that it can find tours shorter than baselines.

The Traveling Salesman Problem with Pickup and Delivery (TSPPD or PDTSP) is
defined on a graph containing pickup and delivery vertices between which there exists a
one-to-one relationship. The problem involves figuring out a minimum cost that prioritizes
each pickup vertex over its corresponding delivery vertex.

The present work also deals with a special case where the focus is on the most efficient
route, not the shortest one. Similar to the PCTSP and PDTSP, it aims to maximize the
ratio of the sum of scores, or the benefit, of items picked up and delivered, divided by the
cost of a trial tour.
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3.7 Some other relevant works

(OLJA et al., 2010) present a relevant research in a number of ways. First, it emphasizes
the importance of accurate weight and balance calculations in ensuring the safety of
aircraft operations. Second, it highlights the potential risks of load sheet errors. Third, it
provides insights into the factors that contribute to weight and balance accidents, which
can be used to develop strategies for preventing these accidents.

(TANG, 2011) developed a method for solving air cargo loading problems under
stochastic demands with a scenario decomposition genetic algorithm, minimizing
handling costs. He does not solve a PDP or an APP. We assume that he does not
consider the load-balancing part of the problem (WBP) because he does not mention it.

(BORTFELDT; WÄSCHER, 2013) present a state-of-the-art survey on practically relevant
constraints in container loading. They also review the modeling approaches as well as
exact and heuristic algorithms. It has been claimed, though, that the proposed approaches
are of limited practical value since they do not pay enough attention to the constraints
encountered in practice. They figure out what practical things need to be considered
when dealing with problems with loading containers, and they look at whether and how
these things are considered in methods for solving such problems. They do not describe
the APP or the PDP.

3.8 Works more related to this work

The studies of (LIMBOURG et al., 2012), (LURKIN; SCHYNS, 2015), (MONGEAU; BES,
2003), (VERSTICHEL et al., 2011), (ZHAO et al., 2021), and especially (LURKIN; SCHYNS,
2015), which we started from, relate most closely to this work. These five articles indeed
deal with commercial cargo aircraft with predefined positions and standardized ULD, use
exact methods, and consider the aircraft’s center of gravity. We nonetheless significantly
depart from these works.

Although the research in this section has a strong influence on this work, there are
some aspects that differentiate it. None of the problems reported deal with pallets yet
on board with multiple destinations, and none of them try to find the most efficient tour,
considering Score (or other client-chosen parameter) maximization while minimizing cost
increases due to CG displacement along the route. This last has a direct impact on carbon
emissions.
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3.9 Road-map

That way, in the following chapters, we accomplish some planned steps:

(1) Generate problem scenarios and instances for benchmarking.
(2) Develop a complete solution process for these scenarios and instances.
(3) Develop an approach for ACLP+RPDP relying on a general-purpose MIP solver.
(4) Solve these scenarios and instances with the solver implemented.
(5) If the solver performance for ACLP+RPDP is not acceptable for operational use or

even does not manage to solve it:

(a) Look for a suitable meta-heuristic to substitute the commercial solver.
(b) In case none present an acceptable result, develop a solution method that would

quickly provide a feasible and not necessarily optimal solution in any situation.



4 Solution approaches

To approach some solution alternatives, we consider a tour consisting of several
delivery and pickup points and the return to the base. This drove us to customize the
constraints of the Air Palletization Problem (APP), the Pickup and Delivery Problem
(PDP), and the Weight and Balance Problem (WBP) in each node, to assess the
performance of five well-known metaheuristics and to develop a fast heuristic for aircraft
loading in multi-leg operations, as well as a Mixed-Integer Program based on the
state-of-the-art Gurobi MIP solver.

Possible alternatives could be the Benders and Dantzig-Wolfe decomposition, as these
methods are powerful tools for solving large-scale optimization problems by breaking
them down into smaller, more manageable subproblems. However, due to the strong
interconnectedness of the subproblems, we were unable to find a way to apply these
methods to the ACLP-RPDP.

We implemented five metaheuristics and a special method to solve ACLP+RPDP,
which are presented in this chapter. A permutation on L yields K! possible tours to
investigate, where K is the index of last node before returning to the base. Throughout
this chapter, πk is a node in position k of a route, and it will be represented in superscript.

The metaheuristics implemented solve a node at a time, following the tour sequence,
considering only the items in the node (Nπk), and the Packed already on board (Qπk),
whose destinations are in Lπk , the subset of possible destinations departing from πk.

An important observation is that the algorithms here presented were designed based
partly on the traditional ideas from the literature and partly on the experiences learned
during initial implementation tests. This has resulted in slightly different algorithms from
the research sources.

4.1 Metaheuristics selection

As ACLP+RPDP resembles the Multidimensional Multiple Knapsack Problem
(MMKP) in each node, having pallets as multiple knapsacks to allocate items to be
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embarked, we researched for metaheuristics previously used to solve MMKP, as
alternatives to solve the Air Cargo Load Planning (ACLP) part of this thesis’ problem.

The implemented metaheuristics were all referred by (LAABADI et al., 2018) to solve
variants o the Multiple Knapsack Problem: Ant Colony Optimization (ACO), Noising
Methods (NM), Tabu Search (TS), Greedy Randomized Adaptive Search Procedure
(GRASP), and Genetic Algorithm (GA). As (FIDANOVA, 2006) solved the MMKP with
ACO, we decided to implement it as a candidate to solve ACLP+RPDP.

(ZHAN et al., 2020) showed advantages of NM to solve the Multidimensional
Knapsack Problem, so we also decided to include NM as a candidate method. The books
(HANDBOOK. . . , 2010) and (HANDBOOK. . . , 2003), both with the same title Handbook of
Metaheuristics, provide comprehensive overviews of various optimization techniques,
including a dedicated chapter on Noising Methods. They discuss the advantages in
high-dimensional problems and presents applications in various fields.

As (NIAR; FREVILLE, 1997) presented a parallel TS for MMKP, reducing run-time and
setting dynamically strategy parameters, we also decided to implement TS, but without
parallelism. (ALONSO et al., 2019) utilized GRASP, a heuristic that found high-quality
solutions in short run times. So, we also decided to implement GRASP. (SHAH, 2020)
used GA to solve a 0/1 Multidimensional Knapsack Problem, it also seemed to be a good
candidate to solve the ACLPP.

We considered several ideas from these authors, and we were careful to use the same
data structures and procedures in all implementations to enforce fair results comparison,
except for GA, where we used the DEAP (Distributed Evolutionary Algorithms in
Python), an evolutionary computation framework. For more details, see (FORTIN et al.,
2012) and github.com/deap/deap, due to its ease of implementation and its wide
applications in real-world problems.

Common elements used by the methods

To guarantee that performance comparisons are made correctly, our implementations
use the same elements described below:

Common to the MIP solver and to the metaheuristics:

Solution printing: All methods use the same procedure to print solutions. This
facilitates results comparisons as well as feasibility checks.

Pallets destinations: Algorithm 21 is applied before solving, to define pallets
destinations based on volume demands for each node.
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Best tour selection: each tour problem is solved, and the result is saved for later
best-tour selection.

Data structure: items, pallets and edges (pallet-item possible allocations) are static
typed arrays from the multiprocessing Python library, which are initialized with the
same data loaded from text files.

Stopping criterion: all metaheuristics stop the search after 0.7-seconds per node, to
keep the tour solution run time within acceptable operational range. With this run
time limit of 0.7 seconds per node, solutions should be found in less than 10 seconds
for scenarios 1 and 2, less than 30 seconds for scenario 3, 2 minutes for scenario 4, 10
minutes for scenario 5, and less than an hour for scenario 6.
(For other comparisons, the stopping criteria will be differently set). Later we
changed the stopping criterion to be proportional to the volume to be loaded in each
node.

Used by the metaheuristics only:

Feasibility: the procedure to evaluate each individual or solution vector.

Local search: the procedure that tries to insert edges to improve solution quality.

Edge attractiveness: The selection of edges for Eπk
N uses the edge attractiveness θπk

ij ,
Equation 4.3, which can be understood as the tendency to allocate the itemπk

j to the
pallet pi. It is directly proportional to the score, and inversely relative to the volume
and torque of each item.

The higher the score and the lower the item volume as the pallet centroid |Di|
approaches the aircraft CG, the better the edge attractiveness θπk

ij . For i, q ∈ {1, 2, . . . , m}
and j, s ∈ {1, 2, . . . , nπk}.

wmax ← max
{

wπk
j

∣∣∣∣ for j ∈ {1, 2, . . . , nπk}
}

(4.1)

dmax ← max
{
|Di|

∣∣∣∣ for i ∈ {1, 2, . . . , m}
}

(4.2)

θπk
ij =

sπk
j

vπk
j

·
(

1−
wπk

j · |Di|
wmax · dmax

)
(4.3)
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The expression wmax · dmax in Equation 4.3 represents the worst torque caused by the
heaviest item.

Finally, we enforced that the only difference among these methods was the search
strategy.

Some considerations on the metaheuristics search space

In the Genetic Algorithm (GA), the search space is a population of solutions with a
number of generations. In Ant Colony Optimization (ACO), many ants have a number
of pheromone trails. The Noising Methods (NM) perform multiple iterations at each of
the numerous noise levels. In the Tabu Search (TS), there are many iterations with a
number of tries to update the Tabu Queue. In the Greedy Randomized Adaptive Search
Procedure (GRASP), there are many iterations with a number of tries with the solutions
from the Restrict Candidates List. Each of the metaheuristics employs a particular set of
strategies to explore the solution space, which may require more computation resources
than simple heuristics.

Here’s a breakdown of some points, as well as some additional thoughts on the search
space in metaheuristics:

. GA: The population size and number of generations define the search space. A
larger population allows for more diverse solutions but requires more computation.

. ACO: The number of ants and pheromone trails influences exploration and
exploitation. More ants can explore a wider area, but managing trails adds
complexity.

. NM: The number of iterations and noise levels determine the search space. Noise
can help escape local optima, but too much noise can hinder convergence.

. TS: Iterations and Tabu list size are crucial. A larger list prevents revisiting recent
solutions, but a small list may get trapped in local minima.

. GRASP: Iterations and the size of the restricted candidate list both play a role.
This list helps focus search but requires balancing exploration and exploitation.

There is a trade-off between exploration and exploitation. Metaheuristics navigate
the search space by balancing exploration (finding new areas) and exploitation (refining
promising areas). While a large search space in metaheuristics can be computationally
expensive, simple heuristics are faster, but may become stuck in local optima.

Some additional considerations are that the design of the search space within a
metaheuristic can be influenced by the specific problem under consideration. Tuning
parameters like population size, number of iterations, or noise levels can significantly
impact performance.
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Overall, understanding the search space in metaheuristics is essential for effectively
utilizing these powerful optimization tools.

4.2 The main process

Once the assumptions of this work and the mathematical modeling of the problem
are presented, it is easy to see that ACLP+RPDP is NP-hard, as the subproblems are
NP-hard.

Real cases are more complex as they have hundreds of different items in each node and
involve three intractable sub-problems: APP, WBP and PDP. Through the mathematical
modeling presented in the previous chapter, we verify that integer programming is not
able to solve these cases in feasible time. Thus, it is necessary to adopt some strategy
to find a viable solution, not necessarily optimal, that seeks to maximize the objective
function f .

Our strategy is based on the fact that, in real cases, K is usually small. Specifically,
we consider K ≤ 6 throughout this work, which is a higher value than usual in Brazilian
Air Force missions. As a result, if there are fast node-by-node solutions that allow us to
construct a complete tour, we will be able to test all possible K! tours and thus select the
one that provides the best sum for the f function, i.e., the best score sum to unbalance
cost ratio.

Each node, except the base, inherits information from the previous nodes (pallets that
must remain on board), and must be solved taking into account the remaining not visited
nodes. One more reason for a node-by-node approach.

The tactic will be, at each shipping node, to predefine the destinations of the pallets
at that node. In this way, a number of pallets will be reserved proportional to the volume
demanded by each destination at the shipping node.

The present author could have used another criterion, but it was observed in the
experiments that volume is more constrictive in airlift.

Once the destinations of the pallets are defined, our methods uses serial and
multiprocessing heuristics to find the best possible node-by-node solutions. This
strategy is summarized in Algorithm 1.

The argument method corresponds to one of the heuristics that will be described ahead
in this thesis, or the MIP solver.

In this algorithm, there are six values for the scenario parameter, according to Table
6.1 (the scenarios), which defines K, the sets of nodes, the aircraft, the pallets and the
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costs from Tables 1.3 (smaller aircraft) or 1.4 (larger aircraft) that will be used (line 2).

Throughout this work, when we refer to surplus, we mean a volume surplus of 20%,
50% or 100% more than the aircraft capacity, to make the problem more difficult to solve
(surplus ∈ {1.2, 1.5, 2.0}).

Algorithm 1 Main
1: procedure Solve_ACLP_RPDP(method, scenario, surplus, timeLim, Sk)
2: Let L, C, M be according to scenario

3: N ← getItems(scenario, surplus)
4: Let G(L, C, M, N) be an empty tour solution
5: G∗ ← G

6: fmax ← 0
7: ntours← |SK |
8: for each π ∈ SK do
9: Gπ, f(Gπ)← SolveTour(π, L, C, M, N, method, timeLim/ntours)

10: if f(Gπ) > fmax then
11: fmax ← f(Gπ)
12: G∗ ← Gπ

13: return G∗(L, C, M, N, EL, EN
M )

In line 3, the items are retrieved from the text files previously generated by Algorithm
19; in line 4, we have an empty solution with reference to the set of nodes L, the
set of travel costs C, pallets M , and the items N in all nodes to be transported; and
timeLim/ntours in line 9 is the time limit for each node solution.

The loop of lines 8-12 goes through all permutations, where the node-by-node solutions
are performed by SolveTour(), whose result is stored in f(Gπ).

The best outcome among all K! tours will be the solution G∗ for the method, scenario,
and volume surplus chosen (line 13), where EL contains the edges connecting the nodes
of the best tour, and EN

M the items loaded in all nodes onto the pallets.

In practical cases, we know that a common aircraft has m = 18 pallets, flight itineraries
have K ≤ 6 nodes plus the base, and each node has hundreds of items to be shipped.
We also know that missions with fewer nodes are more frequent than longer ones. Under
these circumstances, we can adopt some important strategies summarized in Figure 4.1:

1. We consider that the number of destinations is smaller than the number of pallets
(K < m), and we avoid the trivial case where K = 1. With this premise, we can
preset the destinations of the pallets at each shipping node, reserving a number of
pallets proportional to the volume available for each destination. We could have
used another criterion, but it was observed in the experiments that the volume is
more constrictive in airlift.
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2. An important parameter is the number ntours of tours tested. In practical cases
where K ≤ 6, we have the possibility to check all possible tours (ntours = K!). In
this situation, as K is small, we can also specially analyse the two optimal solutions
of the corresponding TSP (ntours = 2). Finally, in cases where K > 6, we will use
a heuristic to select a number of distinct tours (ntours ≪ K!), and search among
them for the one that provides the best value for the objective function.

3. To compare the performance of each strategy, an overall run time limit timeLim

is established and divided by ntours tours. In turn, the run time limit for each
tour will be distributed among its nodes in proportion to the volume available for
boarding.

4. At each node of a tour, the Packed that remain on board are reallocated on pallets
to minimize torque on the aircraft. This calculation is done quickly using a MIP
solver. Then, the destinations of the pallets are previously defined in proportion
to the shipment volume. Finally, considering the run time limit of each node, we
will use a MIP solver and five well-known meta-heuristics to find the best allocation
of shipping items: Ant Colony Optimization (ACO), Noising Methods (NM), Tabu
Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP), and Genetic
Algorithm (GA).

5. We will generate benchmarks using the surplus parameter, which is a value in
{1.2, 1.5, 2.0}. It corresponds, at each node k, to the ratio between the sum of the
volumes of the items and the load capacity of the pallets
(surplus = ∑nk

j=1 vj/
∑m

i=1 Vi). This parameter allows us to verify the different
behaviour of each method, according to scenario and the quantity of items
available for shipment.

6. We will do tests by varying the number K of destinations, the set L of nodes, and
the costs C. Each group of values tested is called scenario, according to Tables 1.2
and 6.1, where 1 < K ≤ 6. After finding the method with the best performance in
node-by-node solution, we will test it in solving cases with K > 6.
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Input data:
Aircraft parameters
Airports and distances
scenario (K, L and C)
Items available for shipment at each airport
surplus =

∑nk
j=1 vj/

∑m
i=1 Vi

timeLim (overall run time limit)
Sk (set of tours)

Requirement: 1 ≤ K ≤ m

Number of tested tours |Sk|:
if K ≤ 6

ntours = 2 (optimal TSP solutions)
or

ntours = K! (all possible tours)
else

ntours≪ K! (tours obtained with a TSP heuristic)

On each tour π:
Calculate a node-by-node solution (divide run time according to shipment volumes):

- Reallocate Packed with torque optimization
- Preset pallet destinations according to shipment volumes
- Find a node solution (MIP, Shims, NM, ACO, GRASP, TS, GA)
- Accumulate values obtained from score, torque and cost
- Go to the next node on the current tour

Figure 4.1 – Solution process

4.3 The algorithm to solve a tour

In addition to the set of nodes, pallets, costs and items, SolveTour, described in
Algorithm 2, receives the parameter method for solving the node-by-node subproblems
and the parameter π, which is a permutation that defines the order of visits in tour π.

All tours start and end at π0 (lines 2-3).

After initializing the score and cost values (lines 4-5), there is a loop for the K + 1
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tours (lines 10-26).

Algorithm 2 Solves the sequence of nodes of tour π

1: procedure SolveTour(π, L, M, C, N, method, tourT ime)
2: π0 ← 0
3: πK+1 ← 0
4: score← 0
5: cost← 0
6: Gπ ← { }
7: sumV ol← 0
8: for k ∈ {1, 2, 3, ..., K} do
9: sumV ol← sumV ol +

∑nπk

j=1 vj

10: for k ∈ {1, 2, 3, ..., K} do
11: nodeT ime = tourT ime · (

∑nπk

j=1 vj/sumV ol)
12: for i ∈ {1, 2, 3, ..., m} do
13: T πk

i ← −1 ▷ reset this pallet destination

14: if k = 0 then ▷ in the base - nothing on board
15: Lπ0 ← L

16: Qπ0 ← ∅
17: else ▷ there are some pallets that will remain on board
18: Lπk ← Lπk − {πk}
19: Qπk ← UpdatePacked(πk)

20: G1 ← InitialSolution(M, Nπk , πk, Lπk , Qπk )
21: G2 ← SetPalletsDestinations(G1) ▷ only for the empty pallets
22: G3 ← SolveNode(method, πk, G2, nodeT ime)
23: s, ϵ← ScoreAndDeviation(πk, G3)
24: score← score + s

25: cost← cost + cπk,πk+1 ∗ (1 + cg ∗ |ϵ|)
26: Gπ ← Gπ ∪ {G3}

27: f(Gπ)← score/cost

28: return Gπ(L, C, M, N, EL, EN
M ), f(Gπ)

In line 11 the node time limit is proportional to the shipment volume.

Initially we set pallets destination as −1 (line 13).

When the aircraft is at node π0, the initial graph G1 is empty because it has no Packed
(line 14). Otherwise, the set Lπk of remaining nodes when departing from πk is updated
(line 18), and UpdatePacked (line 19) returns the Packed that have not yet reached
their destinations and remain on board, rearranging them on the pallets to minimize CG
deviation. This allocation is stored in graph G1 (line 20).

The initial solution referred to in line 20 is generated by Algorithm 3, which is required
by all methods, and also minimizes the CG displacement. This initial solution represents
the system state out of the base, with all delivered cargo disembarked, but the Packed
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destined for not-visited nodes still remain on board.

Algorithm 3 Initial solution
1: procedure InitialSolution(M, πk)
2: M ← set of pallets with destinations defined by Algorithm 21.
3: Qπk ← Packed to be kept on board in node πk

4: G1 ← G(M ∪Qπk )
5: Minimize CG displacement on G1 according to Equation 6.1
6: return an initial solution G1

In the context of this work, we know that m > K, once the aircraft has 7 or 18
pallets and K ≤ 6, allowing there to be at least one pallet for each node to be visited.
SetPalletsDestinations (line 21) presets the destination of each pallet based on the
volume demands caused by the items to be embarked in the current node, without
changing the pallets destination pallets already with Packed.

Finally, SolveNode includes the edges corresponding to the items shipped at the
current node, returning the graph G3 (line 22). The score and the CG deviation of
this graph are calculated (line 23) and accumulated (lines 24-25), allowing the final result
of this tour (line 28).

The procedure UpdatePacked finds the best allocation for the Packed that remain
on board. Initially, the set Qπk is created, with the Packed that did not reach their
destination yet.

Then MinCGDeviation is run through a MIP solver to relocate the Packed on the
pallets minimizing torque and ensuring that they all remain on board, one on each pallet.
As there are few variables, the MIP solver returns an allocation Eπk

Q very quickly.

ScoreAndDeviation(πk, G3) evaluates the allocation graph generated by SolveNode,
returning the corresponding score and CG deviation. It consists of a loop that goes
through all the pallets, accumulating the scores and the torques of the shipped items,
allowing the final calculation of the CG deviation.

4.4 The Greedy algorithm for initial solutions

Almost all methods to be described ahead in this chapter (except GA, that starts
from a random generated population) will need initial solutions. That’s the purpose
of this section to describe the greedy algorithm implemented to generate these initial
solutions.

The Greedy algorithm (4) may receive a partial solution with only Packed on board
and, with a greedy approach based on θπk

ij , builds a simple solution.
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Arguments η1 and level1 are reserved for future use in this Thesis.

For now, let’s consider the argument level1 = 1.0 to make the solution limited by
exactly the pallet volumetric capacity.

This method also updates the aircraft torque τπk in node πk, as well as argument η1.

Line 2 represents the solution graph G with it’s pallets (M), Packed (Qπk) and edges
between pallets and Packed (Eπk

Q ).

Algorithm 4 Mount a greedy solution for node πk.
1: procedure Greedy(πk, G, τπk , level1)
2: G(M, Qπk , Eπk

Q )
3: volume← {0 | i ∈ {1, 2, 3, ..., m}}
4: η1 ← {0 | i ∈ {1, 2, 3, ..., m}}
5: Eπk

N ← ∅
6: for i ∈ {1, 2, 3, ..., m} do
7: for q ∈ {1, 2, 3, ..., m} do
8: if (pi, aπk

q ) ∈ Eπk

Q then
9: volumei ← volumei + vπk

q ▷ Packed contribution to pallet i volume
10: τπk ← τπk + wπk

q ·Di ▷ Packed contribution to aircraft torque

11: for each eπk
ij in non-ascending order of θπk

ij do
12: if (Eπk

N ∪ {e
πk
ij }) is feasible and (volumei ≤ Vi · level1) then

13: Eπk

N ← Eπk

N ∪ {e
πk
ij }

14: volumei ← volumei + vπk
j ▷ item contribution to pallet i volume

15: τπk ← τπk + wπk
j ·Di ▷ item contribution to aircraft torque

16: ηi
1 ← ηi

1 + 1

17: return G(M, Qπk , Nπk , Eπk

Q ∪ Eπk

N ), τπk , η1

This method returns a greedy solution (graph G) with it’s pallets (M), Packed (Qπk),
items (Nπk) and edges connecting pallets with Packed or items (Eπk

Q ∪ Eπk
N ).

Algorithm 4 takes in the worst case O(m2 + m · nπk) steps. However, if the number
of items is much larger than the number of pallets (n >> m), then the time complexity
can be simplified to O(m · nπk).

4.5 Ant Colony

In ACO, introduced by (DORIGO, 1992), a population of A ants performs independent
search, where each Anta finds its own solution Ga.

(JU et al., 2021) explore troops’ movement from one location to another using
available means. To minimize damage from enemies, the military simultaneously uses
reconnaissance and transportation units during troop movements. The authors propose
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a vehicle routing problem considering reconnaissance and transportation for wartime
troop movements. They used an ACO metaheuristic, and computational experiments
were conducted to compare the ACO algorithm’s performance with that of the Integer
programming model. According to these authors, the performance of the ACO
algorithm was shown to yield excellent results, even for the real-size problem.

Each edge eij has an attribute gaπk
ij (general attractiveness), Equation 4.4, whose value

depends on the trail pheromone ϕπk
ij and the edge heuristic attractiveness θπk

ij . If eπk
ij is

included in Ga, Anta increases solution trails pheromone ϕπk
ij .

gaπk
ij = (ϕπk

ij )α · (θπk
ij )β (4.4)

α and β are ACO constants in Equation 4.4, and ϕπk
ij and θπk

ij are kept in the 0-1 range.

A greedy solution G∗ is created from G+ (line 3) and (Algorithm 4). The third
argument with value 1.0 refers to a volume limitation not used by ACO. The returned
parameter η1 also is not used by ACO.

A per iteration number of ants was empirically set (line 5). The total number increases
until the search does not reach stagnation, this yielded solutions with a good quality-to-
time ratio.

The global m · nπk matrices ϕπk
ij and gaπk

ij (lines 10-11) are used and updated by all
ants.

In line 18, edges are chosen by a proportional roulette wheel mechanism, based on
matrix gaπk

ij in Eπk universe, except the already tested edges.

∆ϕπk
ij =

gaπk
ij

A
(4.5)

Equation 4.5 states that the pheromone increments (∆ϕπk
ij ) are calculated by dividing

the current general attractiveness by the number of ants.

A ants are generated in each iteration (lines 14-22).
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Algorithm 5 Ant Colony Optimization
1: procedure ACO(πk, G1, nodeT ime)
2: τπk ← 0
3: G∗, τπk , η1 ← Greedy(πk, G1, τπk , 1.0) ▷ a initial greedy solution based on θ πk

ij

4: En ← ∃eij ̸∈ E∗ ▷ set of edges not in the initial solution
5: A← 8 ▷ number of ants per iteration
6: Ants← 0
7: α← 1.0
8: β ← 4.0
9: ρ← 0.2

10: ga πk
ij ← 0

11: ϕ πk
ij ← 1

12: stagnant← 0
13: while stagnant < 3 and runtime < nodeT ime do
14: for a = 1 to A do
15: Ants← Ants + 1
16: Ga(Ea)← G+

17: while ∃eij ∈ En not tested yet do
18: eij ← roulette(ga πk

ij , En)
19: if Ea ∪ {eij} is feasible then
20: Ea ← Ea ∪ {eij}

21: if f(Ga) > f(G+) then
22: G+ ← Ga

23: ϕ πk
ij ← ϕ πk

ij −∆ϕ πk
ij

24: ga πk
ij ← result from 4.4

25: if f(G+) > f(G∗) then
26: G∗ ← G+

27: stagnant← 0
28: for each eij ∈ E∗ do
29: ϕ πk

ij ← (1− ρ) · ϕ πk
ij

30: ϕ πk
ij ← ϕ πk

ij + ∆ϕ πk
ij

31: ga πk
ij ← result from 4.4

32: else
33: stagnant← stagnant + 1
34: for all τij do
35: ϕ πk

ij ← (1− ρ) · ϕ πk
ij

36: return the best solution found G∗

In lines 16-20, Anta elaborates its solution Ga, considering the current values of gaπk
ij .

In this work, α was set to 1.0 and β was defined as 4.0 (lines 7-8). For further
explanation, see (DORIGO et al., 1996).

In lines 23-24, the pheromone trail is decreased to encourage ants that are behind to
choose other trails, reinforcing diversification and better exploration of the solution space.
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The best solution of each generation is stored in G+ (lines 21-22).

The update of G∗, the stopping criterion, and the global pheromone updates are
performed on lines 25-31. In these lines, as improvements occur, pheromone ϕij evaporates
in line 29, enforcing diversification.

The evaporation rate ρ can be seen as a mechanism that delays premature convergence
towards a sub-optimal solution. In line 35 pheromone is evaporated from all edges, to
foster diversification.

4.6 Noising Methods

The features and variants of NM are detailed by (CHARON; HUDRY, 1993) and
(CHARON; HUDRY, 2001), concluding that NM can be considered a generalization of
Simulated Annealing or Threshold Acceptance when its components are properly chosen.

(ZHAN et al., 2020) compared six variants of NM for the 0-1 knapsack problem,
observing a negligible difference in performance among them. For this reason, we
decided to implement an unique variant of NM, described in Algorithm 6.

Although (CHARON; HUDRY, 1993), (CHARON; HUDRY, 2001) and (ZHAN et al., 2020)
start their algorithms with a randomly generated initial solution, we generated an initial
greedy solution G∗ (line 3). This decision improved the overall results.

Line 6 gives the total number of trials, and line 5 gives the number of noised elementary
transformations. These numbers are adjusted as a function of the problem size, as the
larger the problem, the more trials and iterations are needed for the space search.

The initial noise level rinit (line 8) is of amplitude 2 · rinit, which can vary depending
on whether new solutions are accepted or not. Initially, it is large to foster solution
space exploration, and it is stepped down at each trial, narrowing the search space. The
method for calculating rinit and adjusting the noise rate r over trials is crucial because it
can determine the rate of convergence towards the optimal solution. See Figure 4.2.

δ

r

r

Always accept

Accept or reject probabilistically

Always reject

Figure 4.2 – Behavior of δ ← f(G′′)− f(G′) + u ∗ r



CHAPTER 4. SOLUTION APPROACHES 56

In Figure 4.2, considering the hill climbing, there is a level up where δ is always true
and a level down where δ is always false. The intermediary range may return true or false
randomly to help escape from local optima.

There are a number of elementary transformations at the same noise rate that are
carried out at random. In each iteration within a trial, a remaining item is randomly
selected, and an item chosen for palletization is also selected. They are exchanged if
feasible, and the solution is elementary transformed.

The algorithm is terminated after the number of trials or the time limit is reached.
These numbers must be adequately set to find good solutions of acceptable quality and
time frame.

Just to remember some notations: f(G) is the objective function value for graph G.
E is a set of edges. M is a set of pallets. Nπk is the set of items in node πk.

Algorithm 6 The Noising Methods
1: procedure NM(πk, G1, nodeT ime)
2: τπk ← 0
3: G∗, τπk , η1 ← Greedy(πk, G1, τπk , 1.0) ▷ a initial greedy solution based on θ πk

ij

4: rinit ← 35.0 ▷ value found empirically
5: numIters← n/5 ▷ expressions found empirically
6: numTrials← numIters/5 ▷ expression found empirically
7: step← rinit/(numTrials− 1)
8: r ← rinit

9: for trial ∈ {1, 2, 3, ..., numTrials} do
10: G′ ← G∗

11: for iter ∈ {1, 2, 3, ..., numIters} do
12: if elapsed time > nodeTime then
13: trial← numTrials + 1 ▷ forces termination
14: iter ← numIters + 1
15: G′′ ← Transform(G′) ▷ See Algorithm 7
16: δ ← f(G′′)− f(G′) + u ∗ r

17: if δ > 0 then ▷ if randomly accepted
18: G′ ← G′′

19: if f(G′) > f(G∗) then
20: G∗ ← G′

21: r ← r − step

22: return the best solution found G∗

Noise is added to the variation of the function f between the current solution G′ and
a noised solution G

′′ . We defined this variation as in line 16, where u is a random number
uniformly draw from [−1, 1] and r is the noise rate.

In other words, if δ is positive and bigger than |r ∗ u| it returns True; if δ is negative
and smaller than |r ∗ u| it returns False; and if |δ| is smaller than |r ∗ u| it may return
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True or False.

As ACLP+RPDP is a maximization problem, a noised solution is accepted if δ ≥ 0
(line 17).

Many heuristics applied to combinatorial optimization problems are based on
elementary transformations. We call transformation any operation that changes a
solution S

′ into a solution S
′′ .

Algorithm 7 is used by NM and the Tabu Search to make elementary transformations
into a solution.

Algorithm 7 The elementary transformation method
1: procedure Transform(G′)
2: transformed← False
3: tested← [ ]
4: while not transformed do
5: p← random choice (G′

pallets) ▷ choose a pallet randomly
6: if pallet p /∈ tested then
7: tested← tested ∪ p ▷ mark pallets as tested
8: remaining ← candidate items in this node
9: palletized← items assigned to p

10: while not transformed and |remaining| > 0 do
11: item0 ← random choice (remaining)
12: remaining ← remaining \ item0

13: if |palletized| > 0 then
14: item1 ← random choice (palletized)
15: palletized← palletized \ item1

16: f(G′)← f(G′)− itemscore
1 ▷ update the score with item1 removal

17: if is item0 inclusion is feasible then
18: palletized← palletized ∪ item0

19: f(G′)← f(G′) + itemscore
0 ▷ update the score with item0 inclusion

20: update G′

21: transformed← True ▷ end of this procedure
22: else
23: palletized← palletized ∪ item1

24: f(G′)← f(G′) + itemscore
1

25: if |tested| = |pallets| then ▷ check if all pallets have been tested
26: return G′

27: return G′

4.7 Tabu Search

TS is a local search meta-heuristic (GLOVER, 1986) which avoids entrapment in local
minima and achieves an effective balance of intensification and diversification. This is
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usually obtained by keeping track of the last solutions in a Tabu Queue (TQ).

(XIA et al., 2018)’s work explores the vehicle routing problem (VRP) aiming to reduce
costs, the distance-constrained and capacitated VRP with split deliveries by order was
studied. A new Tabu Search algorithm is designed to solve the problem, and the examples
tested show the efficiency of the proposed heuristic.

Algorithm 8 presents our TS implementation.

To diversify the generation of solutions, the initial G∗ is created using a greedy
algorithm with a roulette wheel based on θ πk

ij (line 2).

Empirically, we defined the size of the Tabu Queue |TQ| = nπk ∗ m/50, 2% of the
problem size and, in a search for a operational acceptable performance, we defined the
number of iterations as a multiple of the TQ size (lines 3-4).

The neighbors of G
′ are generated in lines 9-14, where our implementation ensures

distinct solutions. In line 13, each of these neighbors, if not in TQ, is compared to the
best current solution. In case of improvement, the best solution among all neighbors is
enqueued in TQ and compared with G∗ (lines 15-23).

Algorithm 8 Tabu Search
1: procedure TS(πk, G1, nodeT ime)
2: G∗, τπk , η1 ← Greedy(πk, G1, τπk , 1.0) ▷ a initial greedy solution based on θ πk

ij

3: Ltq ← nπk ∗m/50 ▷ 2% the size of the problem
4: numIters← 20 · Ltq

5: TQ← {}
6: stagnant← 0
7: while stagnant < 3 and run time < nodeT ime do
8: G′ ← G∗

9: for iter ∈ {1, 2, 3, ..., numIters} do
10: if elapsed time > nodeT ime then
11: iter ← numIters + 1 ▷ forces termination
12: G′′ ← Transform(G′) ▷ See Algorithm 7
13: if G

′′ ̸∈ TQ and f(G′′) > f(G′) then
14: G′ ← G

′′

15: if G′ ̸∈ TQ then
16: TQ← TQ ∪G

17: if |TQ| > Ltq then
18: TQ← TQ \ TQ[0]

19: if f(G′) > f(G∗) then
20: G∗ ← G′

21: stagnant← 0
22: else
23: stagnant← stagnant + 1
24: return the best solution found G∗
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4.8 Greedy Randomized Adaptive Search Procedure

GRASP (FEO; RESENDE, 1989) is a meta-heuristic that takes advantage of two
strategies: the high variability of random solutions and the good quality of greedy
solutions. It uses a greedy-probabilistic process, inserting randomness in the generation
of initial solutions and ranking neighboring solutions according to a greedy function.
Algorithm 9 presents GRASP implemented in this work.

In other words, GRASP may be viewed as a repetitive sampling technique. A solution
is built iteratively by adding one component at a time from a candidate set. In each
iteration, the next piece to be added to the solution-in-progress is chosen at random from
a list of limited possibilities, the Restricted Candidates List (RCL).

(GUTIERREZ et al., 2018) proposed a hybrid GRASP to solve the Vehicle Routing
Problem with Stochastic Demands. The effect of adding the GRASP is investigated and
it is shown that it yields better the results. They stated that their proposed method
outperforms the state-of-the-art metaheuristics and that GRASP efficiently solves big
instances in small computational times.

A new greedy solution G∗ is created in line 3, which is improved along the search.

Line 4 contains the edges in node πk in non-ascending order of its heuristic
attractiveness; line 6 defines a temporary set of edges for the local search. Edges that
remain in the RCL are inserted in this set; and line 5 defines the size of the RCL as the
ratio between the size of the problem (nπk ∗ m) and the number of edges (|E∗|) of the
greedy solution G∗.

A new solution G from G+ is created in line 9, that may be improved or not along
the search. In lines 11-12, the first Lrcl elements from E ′ are removed and its edges are
inserted in RCL; in line 17 one of the RCL edges is randomly selected and inserted in G,
if feasible; and in line 26 the temporary edges collected in the internal loop are used to
restart the search, until there are insufficient edges.

Unlike the other metaheuristics implemented, GRASP does not use the proportional
roulette wheel mechanism. Edges are chosen in the RCL uniformly at random (line 17).
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Algorithm 9 The Greedy Randomized Adaptive Search Procedure
1: procedure GRASP (πk, G1, nodeT ime)
2: τπk ← 0
3: G∗, τπk , η1 ← Greedy(πk, G1, τπk , 1.0) ▷ a initial greedy solution based on θ πk

ij

4: Ek ← set with nπk ∗m edges sorted by θπk
ij in non-ascending order

5: Lrcl = nπk ∗m/|E∗|
6: Etemp ← {} ▷ a temporary set of edges
7: stagnant← 0
8: while stagnant < 5 and runtime < nodeT ime do
9: G(E)← G+

10: E′ ← Ek

11: RCL← E
′(1, 2, ..., Lrcl)

12: E
′ ← E

′ \RCL

13: while true do
14: while true do
15: if |RCL| < Lrcl then
16: get out
17: eij ← random(RCL)
18: RLC ← RCL \ eij

19: Etemp ← Etemp ∪ RCL

20: if E ∪ {eij} is feasible then
21: E ← E ∪ {eij}

22: RCL← E
′(1, 2, ..., Lrcl)

23: E
′ ← E

′ \RCL

24: if |Etemp| < Lrcl then
25: get out
26: E

′ ← Etemp

27: RCL← E
′(1, 2, ..., Lrcl)

28: E
′ ← E

′ \ RCL

29: if thenf(G) > f(G∗)
30: G∗ ← G

31: stagnant← 0
32: else
33: stagnant← stagnant + 1
34: return the best solution found G∗

4.9 Genetic Algorithm

Evolutionary algorithms (EA) hold significant importance within the field of
metaheuristics. Through the restriction of the search space, (CHU; BEASLEY, 1998)
achieved the first successful implementation of genetic algorithms. However, for very big
problems, the population size required to adequately cover the search area may become
unfeasibly enormous. This can result in a decreased rate of convergence towards an
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optimal or nearly optimal solution, as it may need a larger number of generations to
sufficiently explore the solution space. The computational expense of assessing the
complete population across numerous generations can become impractical for
exceedingly big issues. As the magnitude of the challenge grows, it becomes increasingly
difficult to guarantee both diversity and efficient exploration.

The Genetic Algorithms (GA) are part of the EA that employ approaches inspired by
natural evolution, such as inheritance, mutation, selection, and crossover, to find solutions
for optimization problems. Individuals with the highest level of strength in a community
are more likely to successfully pass on their genetic material to the following generation.

GA involves the evolution of a population of potential solutions to an optimization
problem, with the aim of improving the quality of these answers. Every candidate solution
possesses a collection of characteristics that can be modified and changed. Typically,
solutions are depicted in binary form, consisting of sequences of 0s and 1s, although
alternative encodings are also feasible. In this work, we adopt a flat array indexed by j,
with values ranging in {1, 2, 3, ..., m} to indicate item-pallet associations.

Evolution typically commences with a populace of individuals (item-pallet
associations) that are formed randomly and occur across successive generations. During
each generation, the level of fitness (the sum of item scores) for each member of the
population is assessed. Individuals with higher fitness are chosen randomly from the
current population, and their genetic makeup is altered (via recombination and
potentially random mutations) to create a new population.

The subsequent iteration of the algorithm utilizes the newly updated population.
Typically, the algorithm stops running when it has either generated a maximum number
of generations or achieved a desirable fitness level for the population.

Reproduction can be achieved using three distinct methods: (1) Clonal
Reproduction: The individual is replicated without any changes and passed on to the
succeeding generation. (2) Crossover: Two individuals are chosen, and their genetic
material is combined at a specific location. The resulting offspring inherits the initial
portion of its genetic makeup from one parent and the final portion from the other
parent. (3) Mutation: A single individual is chosen, and one bit (an item-pallet edge) is
altered.

Algorithm 10 depicts an approximate description of what we implemented by means
of the DEAP framework.
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Algorithm 10 Genetic Algorithm
1: procedure GA(πk, Nπk , M, ng, np)
2: toolbox← A DEAP Toolbox that contains the evolution operators.
3: pop = toolbox.population(np) ▷ a list of individuals
4: cxpb← [0.7− 0.8 ▷ The probability range of mating two individuals
5: mutpb← [0.02− 0.2 ▷ The probability range of mutating an individual
6: for g ∈ {1, 2, 3, ..., ng} do
7: pop← select(pop)
8: brood← eaSimple(pop, toolbox, cxpb, mutpb) ▷ get offsprings
9: toolboxscore ← Evaluate(brood) ▷ Algorithm 11

10: hallOfFame← pop ▷ An object that will contain the best individuals

Algorithm 10 is expected to have at most O(ng · np · nπk ·m) execution time. Where
ng is the number of generations and np the size of the population.

Lines 4 and 5 present the tested ranges of crossover and mutation probabilities.

Evaluate solution

This procedure receives a graph G with its features and returns 0 in case the solution
is infeasible, or the solution score in case the solution is feasible.

This procedure is used by only the Genetic Algorithm.

. M set of pallets

. Qπk Packed on board at node πk

. Nπk set of the items at node πk

. Eπk
Q ∪ Eπk

N set of edges connecting Packed or items to pallets.
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Algorithm 11 Evaluate a node solution
1: procedure Evaluate(G)
2: solution← G(M, Qπk , Nπk , Eπk

Q ∪ Eπk

N ) ▷ the solution graph is interpreted as a vector
3: score← 0
4: weights← { 0 | for i ∈ {1, 2, 3, ..., m} }
5: volumes← { 0 | for i ∈ {1, 2, 3, ..., m} }
6: itemcount← { 0 | for j ∈ {1, 2, 3, ..., n} }
7: torque← 0
8: for i ∈ {1, 2, 3, ..., m} do
9: for j ∈ {1, 2, 3, ..., n} do

10: if solutionj = i then ▷ if item j is allocated to pallet i

11: score← score + sj

12: itemcountj ← itemcountj + 1
13: if itemcountj > 1 then ▷ item allocated to more than 1 pallet
14: return 0
15: weightsi ← weightsi + wj

16: if weightsi > Wi then ▷ weight sum is greater than the pallet capacity
17: return 0
18: volumesi ← volumesi + vj

19: if volumesi > Vi then ▷ volume sum is greater than the pallet capacity
20: return 0
21: torque← torque + wj ·Di ▷ item contribution to the total node torque
22: if |torque| > maxTorque then ▷ aircraft torque out of the permitted range
23: return 0
24: if toj ̸= TOi then ▷ item and pallet destinations are different
25: return 0
26: return score

A try for a more efficient GA

As the current GA approach did not yield any results under the constraints
assessment, we implemented another, more straight-forward version without using any
available packages.

We developed the new GA package as follows:

1. A method to randomly initialize the population of individuals (array indexed by j,
with values ranging in {1, 2, 3, ..., m} to indicate item-pallet associations).

2. Used the procedure in Algorithm 11 to evaluate each solution. This method returns
the fitness.

3. A procedure to select a set of elite parents for the next generation. This procedure
receives the population in a non-ascending list of fitness values and the elite size.
The best individuals constitute the elite.

4. A procedure to ensure uniform crossover between individuals.
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5. A procedure to mutate individuals in place according to a mutation rate. To the
expression "in place", we mean mutate the same individual received without making
a copy, making this procedure prone to efficiency.

6. A procedure to adaptively set the mutation rate. The mutation rate decreases with
each generation. This insight came from the noising rate decreasing from the Noising
Methods optimization.

7. A batch evaluation procedure to call Algorithm 11 in a process-based parallelism
by chunks of the population in a try to improve efficiency.

Although this new package significantly improved the performance of that using the
DEAP package, its solutions were poor, even increasing the number of generations or the
population size. The code is available at:

github.com/celiomesquita/ACLP_RPDP_P/blob/main/genetic.py

4.10 The Shims heuristic

In this last section, we present a new heuristic designed specifically for ACLP+RPDP,
which we named Shims. This strategy is based on a practical observation: usually, smaller
and lighter items are saved for later adjustments to the remaining clearances.

Shim sets are composed of different
thicknesses and are mainly used in plant
engineering and maintenance. By combining
sheets of different thicknesses, the smallest
gaps can be bridged precisely.

(peel-plate.com/en/products/shims/shim-sets/)

Figure 4.3 – Shims of different thicknesses

A brief story about the insight this author had as ideas to solve the ACLP part of the
ACLP-RPDP problem, which led to Shims development:

Upon the author’s retirement from the Brazilian Air Force, residency was
subsequently established not in Brasília, the nation’s capital, but in another city. In
the preparatory phase of relocation, an observation was made during the placement
of the packaged furniture adjacent to the contracted truck. It was noted that the
truck owner engaged in the selection and organization of the cargo with exceptional
precision. His methodical commands resulted in the near-optimal utilization of
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space within the vehicle, leaving only negligible gaps that were too small to
accommodate any additional, smaller boxes.

The accuracy with which the cargo was organized in the truck were eerily
similar to the results obtained by 3-dimensional packing algorithms. This shows an
impressive example of how experienced professionals can use sight measurement
and spatial analysis in real-life packing tasks. It is also worth mentioning the
driver’s insistence on loading the heaviest boxes first, demonstrating his concern for
the vehicle’s stability.

Shims, as described on algorithms 4 and 13, has two phases for each pallet: the greedy
phase and the shims composition and selection phase. Throughout this heuristic, pallets
pi are considered in ascending order of |pi.D| (the closest to CG first), and the n possible
edges eij in non-ascending order of θπi

ij .

Figure 4.4 represents the nπk possible edges eπk
ij of the current pallet pi sorted by θπk

ij ,
where ηi

1 is the last edge index inserted in solution during the first phase (Algorithm 4).

In other words, Shims starts with a greedy solution, then stops close to the local optima
for pallet i (ηi

1) and, in a radius defined by the problem size, makes a local search within
all possible complements in the surroundings. Shims finally selects the best alternative
shim to fit the volume remaining capacity.

ηi
1

| shims |

ηi
2

θπk
ij

eij

Figure 4.4 – nπk edges eij of pi sorted by θπk
ij in non-ascending order

(where nπk is the number of items in node πk)

Put differently, as item-pallet associations (eij) with indexes before ηi
1 are very likely

to belong to the best solutions, they are greedily included in the Shims solution. As the
associations after ηi

2 are presumably to not be part of the best solutions, they are set
apart for an eventual final local search. As a result, Shims operates between these index
thresholds.

The Shims main process is described by Algorithm 12. In line 7 a partial greedy
solution is generated according to the relative volume level1, and determines the values
for array η1 referred in Figure 4.4.
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Algorithm 12 Shims main process
1: procedure Shims(Nπk , πk, G, level1, level2)
2: Let G(Mπk , Qπk , Eπk ) ▷ the initial solution
3: τπk ← 0 ▷ πk aircraft torque
4: η1 ∈ {0 | i ∈ {1, 2, 3, ..., m}}
5: η2 ∈ {0 | i ∈ {1, 2, 3, ..., m}}
6: volsmax ←

{
Vi · level2 | i ∈ {1, 2, 3, ..., m}

}
7: G1, τπk , η1 ← Greedy(πk, G, τπk , level1) ▷ a initial greedy solution based on θ πk

ij

8: for i ∈ {1, 2, 3, ..., m} do ▷ O(m log m)
9: ηi

2 ← ηi
1

10: vol← 0
11: while vol ≤ volsi

max do ▷ calculate η2[i]
12: ηi

2 ← ηi
2 + 1

13: vol← vol + vj

14: getBestShims(i, η1, η2, E, πk, 1− level1) ▷ pallet gap = 1− level1

15: G, τπk , η1 ← Greedy(πk, G1, τπk , 1.0) ▷ a final greedy local search
16: return G(M, Qπk , Nπk , Eπk

Q ∪ Eπk

N )

The Shims first phase is executed by Algorithm 4, that generates a greedy allocation of
the items available in node πk, according to the non-ascending order of θπk

ij , and considering
the Packed already shipped (Eπk

Q ).

In line 15, the last phase is a local search accomplished by the greedy method, when
it tries to include more items, especially the items beyond η2.

Algorithm 12 will take at the worst case O(nπk ·m + m2 + m · log m) steps, which may
be simplified to O(nπk ·m), considering that nπk ·m >> m.
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Algorithm 13 Mount shims of items that fills each pallet gap and return the best shims
1: procedure getBestShims(i, η1, η2, E, πk, slacki)
2: volume← 0
3: b← 1
4: shimsb ← {}
5: Set← Set ∪ {shimsb}
6: for x ∈ {ηi

1, ..., ηi
2} do

7: createShims← True
8: eπk

ij ← E i
x

9: for shims ∈ Set do
10: if eπk

ij ̸∈ (Eπk

N ∪ shims) and eπk
ij is feasible and (vπk

j + volume) ≤ slacki then
11: shims← shims ∪ {eπk

ij }
12: volume← volume + vπk

j

13: createShims← False
14: break
15: if createShims then
16: volume← 0
17: b← b + 1
18: shimsb ← {}
19: shimsb ← shimsb ∪ {eπk

ij }
20: Set← Set ∪ {shimsb}

21: shw ← shims, where shims ∈ Set and
∑

e
πk
ab

∈shims wπk

b is maximum
22: shv ← shims, where shims ∈ Set and

∑
e

πk
ab

∈shims vπk

b is maximum
23: shbest ← shims, where shims ∈ {shw, shv} and

∑
e

πk
ab

∈x sπk

b is maximum
24: return shbest

Algorithm 13 describes the procedure to get the top Shims, the best subset of edges to
fill each pallet gap. This algorithm follows the logic of the First-Fit Decreasing method as
described by (JOHNSON; GAREY, 1985). Although it does not aim to minimize the number
of bins, its mechanism helped build the set of Shims to allow the best to be chosen.

Line 4 creates the first empty shims; line 5 produce the first set of shims from where
the best shims will be chosen; and line 6 iterate in the edges indexes range to find subsets
of shims that fit into each pallet gap.

Initially, new shims creation is permitted (7), but it will only be created if the last
edge could not be included in any shims from the set (15). For each edge, iterate in all
sets in a try to include it in any of the previous shims (9). As the last edge was included,
forbid a new shims creation (13).

Finally, select the best weight shims (21), the best volume shims (22), and the best
score shims (23) between these 2. The best score shims edges will be returned.

We also tried the Best-Fit algorithm, which presented a slight improvement in the
overall results. Best-Fit is an online algorithm for bin packing (shims set creation in this
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work). Its input is a list of items of different volumes, and its output is a subset of the
items that fit in a pallet’s slack. The Best-Fit algorithm was used to create shims and
follow the following steps:

• It keeps a list of open shims, which are initially empty.
• When an item arrives, it finds the shim set with the maximum load into which the

item can fit, if any. The load of a shim set is the sum of the volumes existing in the
shim set before placing a new item.

• If such a shim set is found, the new item is placed inside it. Otherwise, a new shim
set is created, and the coming item is placed inside it.

The code is available in:
github.com/celiomesquita/ACLP_RPDP_P/blob/main/mpShims.py



5 Parallelism and 3-D packing

(MESQUITA; SANCHES, 2024) reflects the contents of the previous chapters, with all
implementations using sequential algorithms. From this point on, we dive into the
application of process-based parallelism to enhance the algorithm’s performance and,
eventually, the quality of the results.

In this chapter, we raise three hypotheses for improvements:

(1) Computer parallelism could improve Shims’s performance.
(2) A procedure for 3-D packing running in process-based parallel computing mode

would keep the run time adequate for operational use.
(3) To reduce ground handling costs, it could be beneficial to minimize the distances

required to move pallets during unloading at the next location.

This chapter seeks to improve (MESQUITA; SANCHES, 2024)’s results in terms of quality
and performance by using computer parallelism, minimizing the distance between the next
node-destined pallets and the cargo door, and performing a 3-D packing procedure on each
pallet.

These improvements in their heuristics are meant to reduce the stress that transport
planners are subjected to because they have to deal with a lot of information in planning
the aircraft route, assembling the pallets, and picking up and delivering at each node. To
the best of our knowledge, this is the first time that an air cargo transport problem that
simultaneously involves APP, WBP, PDP, TSP, and 3-D packing has been addressed.

5.1 Parallelism topologies

By the Amdahl’s law (HILL; MARTY, 2008), there is an optimal number of parallel
executions for each problem in each environment. While working at IBM in 1967, Gene
Amdahl developed the foundation for what became known as Amdahl’s Law or Amdahl’s
Argument. Essentially, the law states that while a process can be decomposed into steps
that may then be run in parallel, the time taken for the whole process will be significantly
limited by the steps that remain serialized.
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In this work’s case, the aircraft torque must be shared with all processes for them to
keep it within its permitted range.The same applies to the list of items to be embarked
on. All processes will have to access the same list to prevent an item from being assigned
to different pallets.

According to (MANFRIN et al., 2006, p.226), there are five topologies for multiprocessing
interchange of information: fully-connected, where the master process broadcasts to all
remaining child processes; replace-worst, where the best-so-far solution process broadcasts
only to the current worst solution process; hypercube, where processes are connected as
a hypercube, and a vertex process broadcasts only to the connected vertices; ring, in
which one process only sends a message to the next process connected to it; and parallel
independent runs, in which there are no communication costs and the best solution is
chosen among all processes.

In this thesis, we had to select the fully-connected topology because the list of items
to embark and the aircraft torque must be accessible for reading and writing by all child
processes. This decision require an effective race condition management.

When threads or processes attempt to simultaneously access a shared resource,
and the accesses can result in an error, we often say the program has a race
condition, because the threads or processes are in a "race" to carry out an
operation. (PACHECO; MALENSEK, 2021, p. 53).

For the multiprocessing 3-D packing procedure mp3Dpacking, the unique shared
information is the current aircraft torque.

5.2 Multiprocessing

According to (BRESHEARS, 2009, p.271), a Process is the operating system’s spawned
and controlled entity that encapsulates an executing application.

It is known that working concurrently opens up synchronization issues. But the
Multiprocessing package (mp) offers both local and remote concurrency, effectively side-
stepping the Python global interpreter lock by using sub-processes instead of threads.
Because of this, the Multiprocessing module lets the programmer take full advantage of
the fact that a machine has more than one processor, normally capable of 2 threads each.

As in the larger aircraft the number of pallets is bigger than the number of threads
available in a common handheld computer, for parallelization, we used the Python
Multiprocessing package, which implements process-based parallelism or parallel shared
memory algorithm. More details on process-based parallelism may be found in (Python

Software Foundation., 2022).
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5.3 The process-based SolveTour algorithm

In this section we present implementations of SolveNode(...), where method

corresponds to a heuristic, k is the index of the current node πk and G is the allocation
graph of the Packed that remain on board at πk.

Below, we present the implementation for SolveNode, the new process-based parallel
heuristic that we propose called Multiprocessing Shims (mpShims).

In addition to the set of nodes, pallets, costs and items, SolveTour, described in
Algorithm 14, receives the parameter method, which corresponds to a heuristic for solving
the node-by-node subproblems, and the parameter π, which is a permutation that defines
the order of visits in this tour.

Observe that this algorithm is a copy of Algorithm 2, whose working is described in
Section 4.3 until line 22.

We describe the working differences from line 19 on, that was included in this chapter.

Algorithm 14 Solves the sequence of nodes of tour π

1: procedure SolveTour(π, L, M, C, N, method, timeLim)
2: π0 ← 0
3: πK+1 ← 0
4: score← 0
5: cost← 0
6: Gπ ← { }
7: for k ∈ {1, 2, 3, ...K} do
8: for i ∈ {1, 2, 3, ...m} do
9: T πk

i ← −1 ▷ reset this pallet destination

10: if k = 0 then
11: Lπ0 ← L

12: Qπ0 ← ∅
13: else
14: Lπk ← Lπk − {πk}
15: Qπk ← UpdatePacked(πk)

16: G1 ← InitialSolution(M, Nπk , πk, Lπk , Qπk )
17: G2 ← SetPalletsDestinations(G1)
18: G3 ← SolveNode(method, πk, G2, timeLim)
19: G4 ← mp3Dpacking(G3)
20: G5 ← minRampDist(G4)
21: s, ϵ← ScoreAndDeviation(πk, G5)
22: score← score + s

23: cost← cost + cπk,πk+1 ∗ (1 + cg ∗ |ϵ|)
24: Gπ ← Gπ ∪ {G5}

25: f(Gπ)← score/cost

26: return Gπ(L, C, M, N, EL, EN
M ), f(Gπ)



CHAPTER 5. PARALLELISM AND 3-D PACKING 72

In line 19, mp3Dpacking(G) packs the items previously assigned to a pallet, which
is feasible in terms of volume, weight, and torque but still not guaranteed to fit into the
pallet. In this procedure, some unfit items are excluded from the solution.

In line 20, minRampDist(G) minimizes the distance of the next node destined pallets,
keeping the CG in its operational range. This procedure is implemented in integer
programming. This method does not affect palletization or the objective function value.

The score and the CG deviation of this graph are calculated (line 21) and accumulated
(lines 22-23), allowing the final result of this tour (line 25).

5.4 Multiprocessing Shims - mpShims

Finally, we present a new multiprocessing heuristic derived from Shims, which we
named mpShims.

Although the second phase solves a Knapsack Problem, a faster algorithms for solving
a Bin Packing Problem was used (the Best-Fit algorithm), and the most well scored bin
(Shims) was selected.

We considered each pallet as a parallel process, taking advantage of nowadays multi-
core computers, being executed in a multiprocessing run-time, accessing concurrently,
reading and writing the list of items and the current value of the CG deviation.

Line 2 the initial solution comes with some Packed on board, a bipartite graph between
pallets and Packed; line 4 creates a lock feature for shared data among processes to avoid
race condition; line 11 calls the greedy method which updates pi, Nπk , τπk , and G; and
line 14 wait for all Greedy processes to finish.



CHAPTER 5. PARALLELISM AND 3-D PACKING 73

Algorithm 15 mpShims main process
1: procedure mpShims(Nπk , πk, level1, G, tmax, level1, level2)
2: Let Gπk (Mπk , Qπk , Eπk

Q ) ▷ the initial solution
3: τπk ← 0 ▷ πk aircraft torque
4: lock ← multiprocessing lock ▷ avoid race condition
5: proc←

{
pi | i ∈ {1, 2, 3, ..., m}

}
▷ each pallet has its own process

6: η1 ←
{

0 | i ∈ {1, 2, 3, ..., m}
}

7: η2 ←
{

0 | i ∈ {1, 2, 3, ..., m}
}

8: volsmax ←
{

Vi · level2 | i ∈ {1, 2, 3, ..., m}
}

9: slack ←
{

Vi · (1− level1) | i ∈ {1, 2, 3, ..., m}
}

10: for i ∈ {1, 2, 3, ..., m} do
11: proci ← mpGreedy(i, πk, G, level1, lock, τπk , ηi

1)
12: forki ▷ trigger a process for each pallet
13: for i ∈ {1, 2, 3, ..., m} do
14: joini ▷ wait for all processes to finish
15: for i ∈ {1, 2, 3, ..., m} do
16: ηi

2 ← ηi
1

17: vol← 0
18: while vol ≤ volsi

max do
19: ηi

2 ← ηi
2 + 1

20: vol← vol + vj

21: proci ← getBestShims(i, η1, η2, E, πk, slacki, lock)
22: forki

23: for i ∈ {1, 2, 3, ..., m} do
24: joini

25: return Gπk (M, Qπk , Nπk , Eπk

Q ∪ Eπk

N )

Line 21 calls the getBestShims() method which updates pi, Nπk , τπk , and G; line 24
wait for all getBestShims() processes to finish; and line 25 returns a complete solution,
a bipartite graph between pallets and Packed or items.

Algorithm 16 generates a greedy allocation of the items available in node πk,
according to the non-ascending order of θπk

ij , and considering the Packed already shipped
(Eπk

Q ). Edges are included in this allocation as long as they respect feasibility
constraints. Furthermore, the volume of each pallet cannot exceed Vi · limit, where
0 < limit ≤ 1 is a given parameter.
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Algorithm 16 Mount a greedy pallet partial solution until the volume and torque limits
1: procedure mpGreedy(i, η1, πk, G, level1, lock, τπk )
2: Let Gπk (M, Qπk , Eπk

Q )
3: volume← 0
4: τmax ←Wmax · limitCG

long ▷ maximum aircraft torque
5: while lock is unavailable do ▷ waits for the lock to be available
6: nothing
7: seize lock

8: if (pi, aπk
i ) ∈ Eπk

Q then
9: volume← volume + vπk

i

10: ∆τ ← wπk
i ·Di

11: τπk ← τπk + ∆τ

12: Eπk

N ← ∅
13: for each eπk

ij in non-ascending order of θπk
ij do

14: ∆τ ← wj ·Di

15: τnew ← |τπk + ∆τ |
16: if (Eπk

N ∪ {e
πk
ij } is feasible) and (volume ≤ Vi · level1) and (τnew ≤ τmax ) then

17: Eπk

N ← Eπk

N ∪ {e
πk
ij }

18: volume← volume + vπk
j

19: ηi
1 ← ηi

1 + 1
20: τπk ← τπk + ∆τ

21: release lock

22: return Gπk (M, Qπk , Nπk , Eπk

Q ∪ Eπk

N )

The set η1 is returned together with the greedy solution. This algorithm returns a
graph with vertices M , Qπk , and Nπk ; and edges Eπk

Q ∪ Eπk
N .

mpShims’ second phase (Algorithm 17) is almost the same as Shims’ second phase,
having the only difference in it’s application, as mpShims is run in multiprocessing run-
time. Thus, I repeat it here to address the lock argument.
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Algorithm 17 Mount shims of edges that fills each pallet gap and return the best shims
1: procedure getBestShims(i, η1, η2, E, πk, slack, lock)
2: volume← 0
3: b← 1
4: shimsb ← {}
5: Set← Set ∪ {shimsb}
6: while lock is unavailable do ▷ waits for the lock to be available
7: nothing
8: seize lock ▷ Avoid race condition
9: for x ∈ {ηi

1, ..., ηi
2} do

10: createShims← True
11: eπk

ij ← Eπk
x

12: for shims ∈ Set do
13: if eπk

ij ̸∈ (Eπk

N ∪ shims) and eπk
ij is feasible and (vπk

j + volume) ≤ slacki then
14: shims← shims ∪ {eπk

ij }
15: volume← volume + vπk

j

16: createShims← False ▷ do not create a new Shims
17: break
18: if createShims then
19: volume← 0
20: b← b + 1
21: shimsb ← {}
22: shimsb ← shimsb ∪ {eπk

ij }
23: Set← Set ∪ {shimsb}

24: release lock

25: shw ← shims, where shims ∈ Set and
∑

e
πk
ab

∈shims wπk

b is maximum
26: shv ← shims, where shims ∈ Set and

∑
e

πk
ab

∈shims vπk

b is maximum
27: shbest ← shims, where shims ∈ {shw, shv} and

∑
e

πk
ab

∈x sπk

b is maximum
28: return shbest

5.5 Multiprocessing 3-D packing

This section’s content is not present in (MESQUITA; SANCHES, 2024), and is designed
to be used with a parallel procedure to pack the previously allocated items onto each
pallet.

We have not planned to solve this part of the problem with an exact approach due
to its complexity. These problems are, in the strict sense, combinatorial optimization
problems, thus NP-hard, that are particularly difficult to solve. Consequently, only a
very few exact algorithms exist.
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The following assumptions were established for the packing problem:

Assumption 1 → Items packed on the pallet cannot overlap, occupying the same space.

Assumption 2 → The placement of items must be orthogonal and parallel to the pallet side.

Assumption 3 → Each item can freely be rotated in the pallet.

Assumption 4 → Items are allowed to be placed on top of each other without restrictions.

More details may be found in (OCLOO et al., 2020).

According to (BRANDT; NICKEL, 2019):
Technically the task to solve is a three-dimensional Container Loading Problem
(CLP) with a multitude of constraints. The CLP alone is known to be NP-hard
and extremely hard to solve even for instances of moderate size. The typical
number of items per transport segment ranges between 300 and 800 items.

This thesis also adopts a similar range as items quantities, from 300 to 1000 items per
node.

To confirm or not Hypothesis (2), we decided to adopt the model for three-dimensional
(3-D) packing based in the instructions on (DUBE; KANAVATHY, 2006), to pack the items
selected for each pallet.

(DUBE; KANAVATHY, 2006) state that the system utilized the First Fit Decreasing
and the Best Fit as the two main heuristic bin packing techniques. They were selected
above other heuristic algorithms due to their higher computational speed and ability to
generate solutions that closely approach the best answer compared to most other heuristic
algorithms.

The main logic of the 3-D packing procedure (3Dpacker) is based on an approximate
algorithm like follows:

1. From a list of items assigned to a pallet, items are sorted from the biggest to the
smallest and placed in such an order on a pallet. Each item has 1 to 6 orientations
(Figure 5.1) to choose from in the moment of placement. The orientation procedure
can select the best direction type among possible orientations.

2. A pivot point is used to determine item’s position. The pivot is an (Xj, Yj, Zj)
coordinate which represents a point in the pallet at which an attempt to pack an
item will be made.

3. The back lower left corner of the item will be placed at the pivot. If the item cannot
be packed at the pivot position then it is rotated until it can be packed at the pivot
point or until we have tried all 6 possible rotation types (first fit).

4. If, after rotating it, the item still cannot be packed at the pivot point, then we move
on to packing another item and add the unpacked item to a list of items that will
be packed after an attempt to pack the remaining items is made.
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5. The first pivot in the empty pallet is always (0, 0, 0). When one item can be placed
into multiple optimal pivot point, the placement selection module can help make a
choice (best fit).

Figure 5.1 – Items possible orientations

(a) (b) (c) (d) (e) (f)

The code is available at: github.com/enzoruiz/3dbinpacking

This code, which was based on the work of (DUBE; KANAVATHY, 2006), was not
planned to run within a multiprocessing framework. We innovate by integrating their
solution into the Algorithm 18.

Algorithm 18 presents the multiprocessing solution method for 3-D packing to be
applied to an existent solution, to guarantee that the item to be palletized actually fit
into the pallet.

Algorithm 18 Multiprocessing 3-D packing procedure
1: procedure mp3Dpacking(πk, G)
2: Let G(M, Qπk , Nπk , Eπk

Q ∪ Eπk

N )
3: proc←

{
pi | i ∈ {1, 2, 3, ..., m}

}
4: unfit←

{
∅| i ∈ {1, 2, 3, ..., m}

}
▷ for each pallet a set of unfit items is initialized

5: lock ← multiprocessing lock
6: for i ∈ {1, 2, 3, ..., m} do
7: proci ← 3Dpacker(pi, Nπk

i , πk, G, lock, unfiti)
8: forki ▷ pallet pi packing process is started
9: for i ∈ {1, 2, 3, ..., m} do

10: joini ▷ waits for the packing process to finish
11: Eπk

Ni
← Eπk

Ni
\ unfiti

12: return G(M, Qπk , Nπk , Eπk

Q ∪ Eπk

N )

According to line 2, this method receives an initial solution produced by a previous
resolution, and according to line 3, each pallet has its own process.

In line 7, Nπk
i is the set of items previously assigned to pallet i and the method

3Dpacker conforms to this model.

Line 11 excludes the unfit items from the solution.
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The running time for the method that composes the 3Dpacker, Best Fit, is (n · log n),
and for First Fit Decreasing, it is (n · log n), excluding the running time for sorting.

5.6 Minimization of the unloading costs

(LURKIN; SCHYNS, 2015) considered an aircraft with two doors, and the minimization
of loading and unloading costs at the intermediate node was modeled through a container
sequencing problem. But, as both aircraft dealt with in this thesis have only the ramp
door, we tried to minimize the distance of travel of pallets inside the cargo bay, favoring
unloading in the next node, by a post optimization of pallets positions to favor this
distance minimization.

To confirm or not Hypothesis (3), that the distances to move pallets on unloading in the
next node could be minimized to benefit unloading costs. We modeled this improvement
as an integer programming model.

Let Dmax be the distance from the last ramp pallet to the center of gravity.

Let Qπk = {aπk
1 , aπk

2 , . . . , aπk
m } be the Packed assembled on the set of m pallets in node

πk.

Let Zπk
iq be the set of binary decision variables that relates pallet i to Packed q in node

πk.

minimize
m∑

i=1

m∑
q=1

Zπk
iq · (Dmax −Di), if toπk

q = πk+1 (5.1)

s.t.:

m∑
i=1

Zπk
iq = 1, q ∈ {1, 2, . . . , m} (5.2)

m∑
q=1

Zπk
iq = 1, i ∈ {1, 2, . . . , m} (5.3)

∣∣∣∣ m∑
i=1

Zπk
iq ·Di · (140 + wπk

q )
∣∣∣∣ ≤ Wmax · limitCG

long (5.4)

Equation 5.1 minimizes the sum of distances of the Packed in a node πk destined to
the next node πk+1;

Equation 5.2 states that each Packed will be assigned to exactly one pallet;

Equation 5.3 states that each pallet will receive one Packed;
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Equation 5.4 guarantees that the torque limit will not be exceeded. 140kg is the empty
pallet weight.

The instruction referred in Algorithm 14, line 20 implements this model.



6 Preparing for solution

This Chapter presents the preparation procedures required for any solution method
to be applied to ACLP+RPDP.

All testing is planned to be accomplished on the testing scenarios from Table 6.1, with
7 instances each. The number of items in each node varies randomly between 250 and
1000, depending on the volume surplus chosen.

Table 6.1 – Testing scenarios

Scenario K Acft L

1 2 smaller {0, 1, 2}
2 2 larger {0, 1, 2}
3 3 larger {0, 1, 2, 3}
4 4 larger {0, 1, 2, 3, 4}
5 5 larger {0, 1, 2, 3, 4, 5}
6 6 larger {0, 1, 2, 3, 4, 5, 6}

Column Acft tells the size of the aircraft used.
Column L present sets of nodes.

The best outcome among all K! tours or any set of previously generated tours will
be the answer for a combination scenario, surplus and method submitted to a solution
method.

The surplus is a constant in {1.2, 1.5, 2.0} that is multiplied by the aircraft volumetric
capacity to make all solutions difficult to obtain, i.e., in each node many items (16.6%,
33.3%, and 50.0%, respectively) will not be loaded due to the pallet volume constraints.

6.1 The items generation

As we are dealing with a new problem, which until now had not been modeled in the
literature, we had to create the benchmarks. For this, we based on the characteristics of
real airlifts carried out by the Brazilian Air Force, as described below.

In the military airlift carried out in Brazil from 2008 to 2010, 23% of the items weighed
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between 10kg and 20kg, 22% from 21kg to 40kg, 24% from 41kg to 80kg, 23% from 81kg

to 200kg, and 8% between 201kg and 340kg. These five groups of items are described in
Table 6.2. On the other hand, as items volumes were known, the average density of these
items is approximately 246kg/m3.

Table 6.2 – Items weight distributions

x P low (kg) high (kg)

1 0.23 10 20
2 0.22 21 40
3 0.24 41 80
4 0.23 81 200
5 0.08 201 340

Procedure roulette(x) accesses this table’s contents
to choose a row at random that is biased toward
column P .

The procedure createItems, which generates N , is described in Algorithm 19. The
parameter scenario defines L and M (line 2), and the parameter surplus sets a percentage
limit on the total volume of items at each node (line 3).

In line 3, surplus will receive values 1.2, 1.5, and 2.0, representing the extra volume
that exceeds the aircraft capacity in each node. This will generate three types of cargo
data to permit more testing variability and to better assess the robustness of the methods
to be developed.

For each generated itemk
j , its destination is uniformly random selected (line 12), its

weight has a distribution according to Table 6.2 (lines 15-16), its score varies 100 (highest)
and 5 (lowest) according to a logarithmic scale (line 14, and its volume is randomly defined
from the density, where we allow a variation of 40% more or less than the average density
of 246kg/m3 (line 17).

In commercial aviation the score calculation from line 14 may be calculated differently,
perhaps more related to the marginal profit of each item transportation.

From line 18 to 20, as the items dimensions were not available in the Brazilian Air Force
transport data, the items’ dimensions were determined randomly from the item volume,
assuming that all items are parallelepipeds. This is essential to permit the application of
a 3-dimensional (3-D) packing procedure.
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Algorithm 19 Procedure to create the items to be transported
1: procedure createItems(scenario, surplus, instance)
2: Let L and M be according to scenario

3: limit← surplus ·
∑m

i=1 Vi

4: N ← {}
5: for k ← 0 to K do
6: j ← 0
7: Nk ← {}
8: vol← 0
9: while vol < limit do

10: j ← j + 1
11: repeat
12: tok

j ← RandomInt(0, K)
13: until tok

j ̸= k

14: sk
j ← ⌊100 · (1− log10(RandomInt(1, 9)))⌉

15: x = roulette() biased through P ▷ see Table 6.2
16: wk

j ← RandomReal(low(x), high(x)) ▷ see Table 6.2
17: vk

j ← wk
j /RandomReal(148, 344) ▷ items density range

18: whk
j ← RandomReal(0.5, 1.0) · 3

√
vk

j ▷ item width

19: dhk
j ← RandomReal(1.0, 3.0) · 3

√
vk

j ▷ item depth
20: hk

j ← vk
j /(whk

j ∗ dhk
j ) ▷ item height

21: vol← vol + vk
j

22: itemk
j ← (whk

j , dhk
j , hk

j , wk
j , vk

j , tok
j , sk

j )
23: Nk ← Nk ∪ {itemk

j }

24: N ← N ∪Nk

25: return N

The procedure createItems is executed once for each scenario, surplus, and instance.
Its generated files are to be retrieved every time a solution method is executed.

The files produced with this procedure are available in:
https://github.com/celiomesquita/ACLP_RPDP_P, in folders surplus20, surplus50,
surplus100, for surplus values in {1.2, 1.5, 2.0}, respectively.

6.2 The memory structures and data loading

Before the application of any solution method in each node, some global scope
parameters must be set. Hence, a preparation described in Algorithm 20 is applied.

In line 6, as the number of nodes is small (at most 7), instead of solving the TSP with
some more efficient method, we decided to test all permutations of nodes, as it is of low
computational cost.



CHAPTER 6. PREPARING FOR SOLUTION 83

Algorithm 20 Memory structures data
1: method ∈ {MIP, ACO, NM, GRASP, TS, GA, Shims, mpShims}
2: scenario← select in Table 6.1
3: surplus ∈ {1.2, 1.5, 2.0} ▷ choose a volume surplus
4: N ← getItems(scenario, surplus, instance) ▷ retrieve items from the text files
5: L← set of K nodes ▷ according to scenario

6: ΠK ← set of K! permutations of K nodes
7: M ← set of m pallets ▷ according to scenario

8: Wsum ←
∑m

i=1 Wi

9: Tmax ← payload · limitCG
long ▷ according to scenario

10: Wmax ← min(Wsum, payload) ▷ due to different aircraft sizes
11: Vmax ←

∑m
i=1 Vi

In line 1, MIP is an mixed-integer capable programming solver; ACO is the Ant Colony
Optimization; NM the Noising Methods; GRASP is the Greedy Randomized Adaptive
Search Procedure; TS is the Tabu Search; GA is the Genetic Algorithm; Shims is a new
heuristic proposed in this thesis; and mpShims is a multiprocessing parallel version of
Shims.

6.3 An integer programming attempt

The development of efficient algorithms has significantly advanced the capability to
solve large-scale linear programs that incorporate numerous variables and constraints.
Nevertheless, the introduction of integer variables complicates these problems,
necessitating distinct methodologies for optimal resolution. In these situations, which
are called Mixed-Integer Programming (MIP) problems, you need to use special
methods like branch-and-bound, branch-and-cut, or heuristic algorithms to find the best
or almost best solutions in the larger solution space.

The following are currently the possible framings used in solving Integer programming
models:

1. An exact algorithm: with this method, we obtain a guaranteed optimal solution,
but it may take an exponential number of iterations to obtain it. Examples of
the exact algorithms are cutting-plane, branch-and-bound, branch-and-cut, and
dynamic programming.

2. Heuristic algorithms: these methods find a suboptimal solution. Empirical
evidence suggests that these algorithms tend to find a good solution quickly.

3. Approximation algorithms: these methods involve a practical running time
suboptimal solution obtained together with a bound on the degree of suboptimality.
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In this section, we analyze the performance of a commercial MIP tool as a solution
alternative to the problem modeled. We used the well known Gurobi (www.gurobi.com,
with an individual academic license).

In Table 6.3, we solve by a node-by-node approach, because it solves this problem a
node at a time, starting at the base and ending at the last node before returning to the
base.

It can be observed in Table 6.3 that the MIP solver is not capable of solving all
scenarios of ACLP+RPDP in an operationally acceptable time.

Scenarios 5 and 6 were not submitted to the MIP solver due to the anticipated long
time (over 4 h and 24 h, respectively) to solve all tours.

Table 6.3 – MIP solver results

Run time
Scenarios f(G∗) (60s per node)

1 12.03 3min 1s
2 7.65 6min 8s
3 11.14 18min 39s
4 12.37 1h 30min
5 > 4h
6 > 24h

As the ACLP+RPDP subproblems are HP-hard, we conclude that ACLP+RPDP is
also NP-hard, which was confirmed by the results found in this chapter. This led us to
assess the performance of five metaheuristics and a special method to solve ACLP+RPDP,
which are presented in Chapter 4.

6.4 The pallets destinations subproblem

Algorithm 21 pre-determines the destinations for pallets by considering the total
volume of items in the nodes yet to be visited. This aligns with the requirements of
the mathematical model in Chapter 2.
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Algorithm 21 Algorithm to set pallets destinations
1: procedure SetPalletsDestinations(πk)
2: vol← { 0 | 0 to K} ▷ array to store the accumulated volumes
3: destmax ← 0 ▷ destination with maximum volume
4: volmax ← 0
5: total← 0
6: for j ← 1 to nπk do
7: d← toπk

j ▷ item destination
8: if d ∈ Lπk then ▷ destination not visited yet
9: vold ← vold + vπk

j ▷ accumulate the volume in destination d

10: total← total + vπk
j

11: if vold > volmax then
12: destmax ← d ▷ update the destination with maximum volume
13: volmax ← vold ▷ update the maximum volume
14: numEmpty ← count(T πk

i = −1, for i ∈ {1, 2, 3, ..., m}) ▷ the number of empty pallets
15: for x← 0 to K do
16: if volx ̸= 0 then
17: needed← max{1, ⌊numEmpty · volx/total⌋} ▷ the number of pallets needed
18: used← 0 ▷ the number of pallets used
19: for i← 1 to m do
20: if used < needed and T πk

i = −1 then
21: T πk

i ← x ▷ set a pallet destination
22: used← used + 1 ▷ update the number of pallets used
23: for i← 1 to m do
24: if T πk

i = −1 then
25: T πk

i ← destmax

26: return M ▷ return the modified set of pallets

This preliminary procedure is run to set pallets destinations according to each item
disembarkation node. The number of pallets reserved for each destination is proportional
to the volume demand for each delivery point. It could be related to weight but, as volume
is more constrictive in airlift, we decided to use volume.

As pallets positions and destinations are defined, they are assembled considering the
position they will occupy along the cargo bay. This fosters more freedom for the algorithm
to fine tune weight balance, as each item allocation contributes to torque. This is an
innovation, as others works (BROSH, 1981), (LIMBOURG et al., 2012), (VERSTICHEL et al.,
2011), and (VANCROONENBURG et al., 2014)) play with pallets positions to minimize CG
shift.

In line 24, if there is still some pallet without destination, set its destination to the
node of maximum accumulated volume.

Some important considerations for this procedure are:
(1) it makes the node-by-node solution possible in practical running time;
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(2) it is run prior to all methods; and
(3) it may be a limitation if m < K, as it could be impossible to set the pallets

destinations to all nodes.

Regarding consideration (3), it is not a limitation for this thesis because the number
of nodes is always less than the number of pallets in the scenarios considered.

6.5 The boarded cargo CG displacement subproblem

When not at the base, some Packed contents may have to remain on board until their
delivery point. Before completing the cargo with current node items by building a new
Packed, it is reasonable that the current torque may temporarily exceed the operational
range. So, something must be done to make the next mission leg feasible. This may be
done by simply building new Packed in a way to make the next cargo plan feasible.

Another option is to rearrange pallets to minimize torque before starting to compose
the new Packed. We have decided on this second option because it was noted that in
some instances, and in some nodes, poor solutions were generated before this approach
was adopted.

This subproblem must be solved in each node before the solution method is executed,
as after pallet disembarkation, the cargo tends to be extremely unbalanced.

The present author uses a MIP tool to solve this, which is implemented according to
the mathematical formulation ahead and takes a very short time as there are only two
variables: the number of pallets and the quantity of Packed items.

Let M = {p1, p2, . . . , pm} the set of m pallets. Each pallet pi, 1 ≤ i ≤ m, has its
centroid distance to the CG of the aircraft Di.

Let Qπk = {aπk
1 , aπk

2 , . . . , aπk
c } the set of cπk Packed that remain on board of the aircraft

in node πk. Each Packed aπk
q , 1 ≤ q ≤ cπk in node πk, has its weight wπk

q , and is stacked
on some pallet.

Let Yiq be binary variable, where 1 ≤ q ≤ cπk and 1 ≤ i ≤ m. Yiq = 1 if Packed q is
assigned to pallet i, Yiq = 0 , otherwise.

minimize torque

∣∣∣∣ m∑
i=1

cπk∑
q=1

Yiq ·Di · wπk
q

∣∣∣∣ (6.1)

s.t.:
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m∑
i=1

Yiq = 1, q ∈ (1, 2, 3, ..., cπk) (6.2)

cπk∑
q=1

Yiq ≤ 1, i ∈ (1, 2, 3, ..., m) (6.3)

The expression 6.1 represents the boarded Packed torque minimization. Its absolute
value must be minimized because torque may assume negative (section ahead of the CG)
or positive values (behind of the CG).

The Equation 6.2 guarantees that all Packed remain on board, and the equation 6.3
guarantees that at most 1 Packed is assigned to a pallet.

Given the bounded size of ACLPP (m and cπk are at most 18), the complexity of solving
this integer programming model is expected to be low for state-of-the-art solvers. The
problem is well within the capabilities of modern computational tools to solve efficiently,
making it feasible to expect quick and optimal solutions in practice, despite the theoretical
NP-hardness of IP problems in general.

It is important to notice that the constraints defined in the mathematical model handle
torque constraints by moving pallets or reassigning items to pallets to keep the aircraft
CG in its operational range.



7 Results and discussions

In this chapter, we present the results of all solution procedures, as well as the
preliminary configurations needed for each method. All methods solve each tour problem
using a node-by-node approach and save the results for later best-tour selection.

The experiments are performed on a 64-bit, 16GiB, 3.4GHz, 8-core ®Intel i7-3770
CPU, 2 threads per core, with Linux Ubuntu 22.04 LTS as the operational system and
Python 3.10.6 as the programming language.

7.1 Parameters tuning

A relevant problem with meta-heuristics is the parameter’s adjustment to extract the
best possible efficiency in the optimization. The bulk of the tools to fine-tune these
parameters utilize a statistical backdrop that enables them to make accurate predictions
regarding the differences in candidate configurations’ performance. Inadequacies in the
design of the statistical experiment may therefore lead to erroneous results from the
statistical tests and, subsequently, cause the approach to produce inaccurate comparisons
of candidate configurations.

To determine the parameters level1 and level2 used by Shims, We previously carried
out some experiments with the irace tool (LÓPEZ-IBÁÑEZ et al., 2016), the results of which
are presented in Table 7.1. In these tests, of every 7 instances generated for each value of
surplus, 4 were used as the training set and 3 as the testing set. We provided the ranges
[0.8, 1.0] and [1.0, 2.0] for level1 and level2, respectively. In each experiment, there was a
maximum of 3,000 runs so that irace would have enough data for its statistical tests. For
more details, see cran.r-project.org/web/packages/irace/.

Table 7.1 – irace results for Shims parameters

surplus level1 level2 run time (min)

1.2 0.8621 1.0539 47
1.5 0.9199 1.1399 59
2.0 0.9617 1.5706 63
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We did not use this tool to fine-tune ACO, GRASP, NM, and TS because it was
expected that, although the quality of the results would have improved, their run time
would remain much larger than that of Shims. We adjusted their parameters through
trial and error, using the defaults found in the literature for the multidimensional multiple
knapsack problem. We did it for Shims because, as it was the fastest method, we wanted
to compare its quality results with those of the MIP solver.

7.2 Metaheuristics results

In the following tables we present columns or rows with the expressions: Norm. and
Speedup. The average tour values were presented for f and, for the run time, the
worst result obtained. To facilitate the comparison between the methods, we added these
expressions:

• Norm.: value between 0 and 1, which corresponds to the ratio between the sum
of f values obtained by the method in all scenarios and the sum of the best values
obtained among all methods in all scenarios. The higher the value of Norm., the
closer the method approached the best solutions found.

• Speedup: ratio of the sums of the worst run times of all scenarios and the sum of
the method run times in all scenarios. The method with the highest Speedup is
the fastest.

For the term sequential, we mean not using multiprocessing parallelism.

All metaheuristics got to feasible solutions with all parameters within their constrained
values, as stated in the mathematical model.

The metaheuristics implemented follow a node-by-node approach, considering only the
items in the node, and the Packed already on board, whose destinations are in Lπk , the
subset of possible destinations departing from node πk.

It is important to note that this node-by-node strategy is a way of quickly arriving at
a feasible solution for two reasons:

(1) because the heuristics are fast, and
(2) because the number of destinations is at most 6.

In an attempt to keep metaheuristics run times within an acceptable operational limit,
each node had its solving duration limited to 0.7 seconds. Most of the metaheuristics
yielded good solutions within this run time limit. Also, by adjusting their parameters,
efforts were made to keep all metaheuristics performing similarly, with at least scenario 5
having a reasonable run time.
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There is no column for GA in Table 7.2 because its solutions were very poor, even
increasing the number of generations or the population size.

• in our first attempt, considering only weight and volume constraints, our
implementation was able to solve problems of up to 100 items being allocated on
18 pallets in less than 10 seconds.

• when we included the item count constraint to prevent the same item from being
allocated to more than one pallet, GA was able to solve only small problems (20
items on 2 pallets).

• we increased the number of items to 150 and the number of pallets to 18, but even
adjusting the GA parameters for more generations (2,400) and more individuals
(1,200), GA did not generate any viable solutions. The run time for this attempt
was about 10 minutes.

• we implemented a new version without using the DEAP package. The performance
improved, but the results continued to be very poor.

We segmented Table 7.2 in 2 sets of rows: the upper set of rows presents the absolute
values of f , and the average times to solve one instance; in the lower set of rows, we
divided each f value by the maximum f value of the row.

Table 7.2 – Metaheuristics results with surplus = 1.2, a time limit of 3600s

NM ACO GRASP TS
Scenarios f run time (s) f run time (s) f run time (s) f run time (s)

1 11.260 1 11.578 3 11.397 1 11.260 5
2 8.382 4 8.399 17 8.402 12 8.394 4
3 11.206 17 11.293 56 11.238 47 11.118 18
4 13.117 87 13.253 278 13.131 258 13.033 90
5 13.322 520 13.728 1516 13.396 1690 13.225 586
6 12.197 3582 12.358 3602 12.155 3292 11.214 2627

f Speedup f Speedup f Speedup f Speedup

Norm. 0.990 1.29 1.00 1.00 0.993 1.03 0.972 1.63

We colored in red the run times over 20 minutes (1200s).

Different meta-heuristics handle time constraints differently.

Genetic Algorithm (GA): This method requires evolving a population of solutions
through multiple generations. The more generations needed to explore the solution space
thoroughly, the longer it takes to run.

Ant Colony Optimization (ACO): ACO relies on many ants exploring various
pheromone trails. Finding the best solution requires enough time for this exploration to
happen.
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Noising Methods (NM): These methods involve running many iterations at different
noise levels. The number of iterations and noise levels directly impacts the running time.

Tabu Search (TS): Similar to other methods, TS requires numerous iterations and
updates to its Tabu list, which can be time-consuming for complex problems.

Greedy Randomized Adaptive Search Procedure (GRASP): This method also relies
on multiple iterations, exploring solutions from the Restricted Candidates List. The more
iterations and list size, the longer it takes to find a solution.

It is important to emphasize that each tour problem is solved, and the result is saved
for later best-tour selection.

Table 7.3 presents the overall result of the metaheuristics, extracted from Table 7.2.

Table 7.3 – Overall results

Method Best scenarios Worst scenarios Worst run times (min)

NM 5 6 60
ACO 1, 3, 4 5, 6 25, 61

GRASP 2 5, 6 28, 55
TS - 6 44
GA - 1,2,3,4,5,6 did not solve

In (MESQUITA; SANCHES, 2024), these scenario numbers are different because in that article
there was no scenario with the smaller aircraft.

7.3 Shims x Metaheuristics

From this point forward, dividing the total time limit by the quantity of tours yields
the time limit for solving a tour. The time limit to solve a node is proportional to the
volume to be embarked on at each node. It is different from the previous section, where
we established the node limit at 0.7 seconds.

It is important to highlight that, for each table, all experiments with seven instances
were run again with the methods under the test to enforce a fair comparison.

As we ventured into the realm of processed-based parallelism, the Multiprocessing
Python package required the use of typed variables and their passing as arguments as
Python dictionaries. This forced us to make a complete code refactor, which resulted in
a great gain in efficiency for almost all metaheuristics (except GA).

We run the surplus = 1.2 with a time limit of 1200s experiments, which are presented
in Table 7.4.
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Table 7.4 – Metaheuristics results with surplus = 1.2, a time limit of 1200s

NM ACO GRASP TS Shims
Scenarios f time (s) f time (s) f time (s) f time (s) f time (s)

1 12.33 1 12.81 5 12.76 1 13.16 1 13.19 1
2 8.10 81 8.52 145 8.48 82 8.48 81 8.47 1
3 11.70 310 12.28 594 12.22 261 12.21 260 12.10 4
4 12.84 985 13.40 1187 13.33 985 13.34 985 13.37 17
5 13.83 993 14.51 1206 14.42 999 14.41 999 14.66 21
6 50.26 920 52.04 1230 51.32 894 49.36 810 52.17 82

f Speedup f Speedup f Speedup f Speedup f Speedup

Norm. 0.955 1.11 0.994 1.00 0.985 1.36 0.971 1.39 0.998 34.7

It can be observed in Table 7.4 that, after the code refactoring, almost all methods
got to acceptable results in less than 20 minutes.

It is also necessary to highlight the quality of the Shims and ACO metaheuristics,
because both got three of the best results. Shims was remarkably faster because the
main purpose of this research was to find the fastest possible solution method for the
ACLP+RPDP.

As to the code refactoring, we applied some common techniques like optimizing
algorithms, removing redundant code, improving variable and function names,
modularizing code into smaller pieces, and applying known design patterns. We also had
to set all variables to be statically typed to enhance memory access operations. It is
simpler to see the effects of those changes when variables are statically typed.

(TRAINI et al., 2021) conducted a large-scale study analyzing 20 software systems and
found that refactoring can significantly affect execution time. They conclude that no
single refactoring type is "safe" for performance, and caution is needed, especially for
types that break down complex code structures.

We also followed some strategies to enhance the Python code performance:
• We moved to more efficient data structures, minimal use of global variables, and

the use of built-in functions and libraries.
• Python’s built-in functions and standard libraries, like itertools and functools, that

are optimized for performance and can handle operations more efficiently than
custom, manually looped solutions.

• Vectorization with NumPy arrays for numerical computations can lead to significant
speedups due to NumPy’s internal optimizations and use of C libraries.

• Concurrency and parallelism can improve the performance of IO-bound or CPU-
bound tasks.

• Caching results with memoization can prevent redundant calculations by storing
and reusing results.
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• Minimal looping over data, using list comprehensions, generator expressions, or
map/filter functions, can reduce the overhead of loops.

7.4 Shims x MIP solver

We ran Algorithm 1 (the main process to solve the ACLP+RPDP) considering the 5
scenarios from Table 6.1, 3 values for surplus from {1.2, 1.5, 2.0}, 4 values for tmax from
{240s, 1200s, 2400s, 3600s}, and two methods: a MIP solver with Gurobi and Shims.

For the MIP solver to be able to solve the largest possible number of tests without
memory overflow, its parameter MIPgap was set to 1%. i.e., the relative difference between
the primal and the dual solutions (MIPgap = |zP − zD|/|zP |).

This shortens its run time, in addition to ensuring that its objective function f is at
most 1% of the optimal solution. For more details, see www.support.gurobi.com.

For each scenario, surplus and tmax tested, 7 different instances were employed.

We indicate the adopted strategies of dedicating all the processing time to the ntours =
2 shortest tours or distributing it among all ntours = K! tours.

The results obtained with tmax = 3600s, which is the highest tested run time limit,
are in tables 7.5, 7.6 and 7.7, with surplus values of 1.2, 1.5 and 2.0, respectively.

It is also important to highlight that all methods, under this new code structure, are
viable for operational use. But there is no doubt that the Shims’ speedup puts it in an
advantageous position among the other methods.

We mark with an x the cases where the MIP solver did not find a feasible solution
within this run time limit or had to be aborted due to high random-access memory (RAM)
usage.

After Gurobi’s MIPgap parameter setting, it managed to solve two tours with a very
short run time, but Shims was 7 to 40 times faster, having tied with Gurobi with the
values of the f function.
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Table 7.5 – Solutions with surplus = 1.2 and tmax = 3600s

ntours method scenario 1 2 3 4 5 6
Normalized
Speed-up

2
MIP solver

f 12.81 8.53 11.79 13.14 13.52 12.36 0.9998
time (s) 5 29 28 25 27 27 1.0

Shims
f 12.80 8.54 11.78 13.06 13.51 12.34 0.9980

time (s) 1 1 1 1 1 2 22.7

K!
MIP solver

f 12.81 8.60 12.20 13.66 15.00 x 0.9998
time (s) 5 30 35 123 314 x 1.0

Shims
f 12.81 8.61 12.28 13.46 14.99 13.35 0.9958

time (s) 1 1 1 4 10 51 7.49

Table 7.6 – Solutions with surplus = 1.5 and tmax = 3600s

ntours method scenario 1 2 3 4 5 6
Normalized
Speed-up

2
MIP solver

f 17.99 11.83 16.73 18.07 18.83 16.86 0.9996
time (s) 6 55 64 39 40 88 1.0

Shims
f 17.98 11.85 16.72 18.05 18.80 16.87 0.9993

time (s) 1 1 1 2 2 2 35.8

K!
MIP solver

f 17.99 11.83 16.93 18.40 20.95 17.60 0.9999
time (s) 6 63 59 195 472 2258 1.0

Shims
f 17.98 11.85 16.91 18.36 20.93 17.50 0.9976

time (s) 1 1 2 5 15 100 23.8

Table 7.7 – Solutions with surplus = 2.0 and tmax = 3600s

ntours method scenario 1 2 3 4 5 6
Normalized
Speed-up

2
MIP solver

f 26.33 17.70 24.20 26.39 27.17 24.20 0.9995
time (s) 10 168 98 79 70 72 1.0

Shims
f 26.32 17.74 24.22 26.32 27.07 23.13 0.9896

time (s) 1 1 2 2 3 4 40.6

K!
MIP solver

f 26.33 17.90 25.44 26.51 29.13 x 0.9994
time (s) 9 178 143 378 862 x 1.0

Shims
f 26.33 17.94 25.45 26.44 28.84 26.22 0.9970

time (s) 1 1 3 10 31 196 34.7

From these data, we can draw some conclusions:
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1. The strategy of testing all K! tours often provide a better-quality solution, even with
less time on each node. This shows that the four sub-problems are interconnected
in such a way that it is not enough to solve them separately.

2. The MIP solver fails in some cases when scenario = 5 and the strategy is to check
all K! tours. This occurs because the run time limit per node is smaller and there
tend to be more Packed in the aircraft, reducing the space for allocating items and
making the solution difficult.

3. When the MIP solver finishes, it finds the best solution, but the one obtained by
Shims reaches at least 98.96% of that value. Considering only the strategy of testing
all K! tours, this value increases to 99.58%.

4. Shims always finds a solution, being 7 to 40 times faster.
5. All run times are much lower than the limit because the solution on many nodes

can be fast. Anyway, in all the tests performed, the maximum time spent by Shims
did not reach 4 minutes. On the other hand, when scenario = 5 and surplus = 1.5,
the MIP solver spent almost 40 minutes.

Table 7.8 shows the results obtained with the strategy of testing the K! tours in all
scenarios with different tmax. We can observe more cases where the MIP solver fails,
even in smaller scenarios. When the MIP solver finishes, Shims finds a solution of similar
quality (99% or better). In all cases, Shims finds a solution in less than 4 minutes, being
≈ 27 times faster.

In Table 7.8 we omitted scenarios 1, 2, and 3 because all methods managed to solve
them.

Table 7.8 – Solutions testing all K! tours with different run time limits

surplus 1.2 1.5 2.0

method tmax scenario 4 5 6 4 5 6 4 5 6

MIP solver

240s
f 13.67 x x 18.10 x x x x x

time (s) 124 x x 200 x x x x x

1200s
f 13.31 10.00 x 18.25 20.64 x 26.49 27.97 x

time (s) 129 320 x 190 304 x 384 579 x

2400s
f 13.67 15.00 13.41 18.03 20.95 17.60 26.15 29.13 x

time (s) 134 310 1520 199 461 2258 383 786 x

3600s
f 13.66 15.00 13.41 18.01 20.95 17.60 26.15 29.13 x

time (s) 123 314 1520 195 472 2258 378 862 x

Shims 240s
f 13.46 14.99 13.35 17.99 20.93 17.50 26.14 28.84 26.22

time (s) 4 10 51 5 15 100 10 31 196
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The actual RAM consumption of the MIP solver was over 8.5 GB, and all of Shims’s
executions consumed at most 1.5 GB of RAM.

7.5 Shims with more than 7 nodes

These last results do not correspond to practical cases of air transport, as tours where
K > 6 very rarely occur. However, it is possible to see that the Shims maintains robust
behavior as the number of nodes grows; that is, it could be adapted to similar contexts
(ships and trucks, for example), where there may be more nodes.

Considering real data from the 15 main Brazilian airports, we implemented a GA-based
TSP heuristic. We implemented this heuristic with DEAP (Distributed Evolutionary
Algorithms in Python), an evolutionary computation framework. For more details, see
(FORTIN et al., 2012) and github.com/deap/deap.

We triggered DEAP to return 100 solutions, which we filtered for the diverse ones
(which returned from 30 to 50 diverse solutions) to be solved by Shims and selected those
with the best benefit-cost ratio. This procedure reduced the time to generate solutions
to the 7-node scenario to less than 100 ms and 15 nodes to less than 800 ms, making the
overall process still faster than that of (MESQUITA; SANCHES, 2024).

This is an innovative approach to solving the Traveling Salesman Problem (TSP) with
a practical twist for handling a limited number of nodes efficiently. It moves beyond the
exhaustive search method for small node sets (K!) through optimization with a GA-based
TSP heuristic.

Figure 7.1 shows the run time curve of Shims as the number K of nodes increases,
indicating at each point the value found for the objective function f . Runtime and f are
the averages obtained from 7 instances generated with surplus = 2.0 for each value of K.
In Figure 7.2, we indicate one of the tours found by this TSP heuristic when K = 15.
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Figure 7.1 – Shims performance with surplus = 2.0 Figure 7.2 – A tour where K = 15

7.6 Multiprocessing results

(MESQUITA; SANCHES, 2024) reflect the results with all implementations via sequential
algorithms. From this point on, we present the results of the application of process-based
parallelism to enhance the algorithm’s performance and, as will be noticed, the quality of
the results.

In this section, we raised three hypotheses for improvements:
(1) Computer parallelism could improve Shims’s performance: as mpShims was twice

as faster as Shims, this hypothesis was confirmed.
(2) The procedure for 3-D packing generated an unfit item rate of, on average, 13%.

We are conscious that this unfit rate could be smaller if we had chosen (PAQUAY et

al., 2018a) approach, but as we are concerned with an operational application where
the running time is crucial, we stick to faster approximate approaches like the First
Fit Decreasing (first orientation that fits) and the Best Fit (best pivot point if more
than one is available), like proposed by (DUBE; KANAVATHY, 2006).

(3) The distances to move pallets on unloading in the next node could be minimized
to benefit ground handling costs. This hypothesis was confirmed by the results on
Table 7.11.

mpShims consider that, theoretically, all items selected for the pallets would fit. But,
due to the variability in item dimensions, an actual complete fit is not possible, causing
some unfit items to be excluded from the previous solution.

This solution phase was a multiprocessing 3-D packing with each pallet as a process,
which decreased this phase’s run time by approximate a n−1 factor where n is the number
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of processes. This was possible because each packing process is completely independent;
there is no multiprocessing shared memory. It is also important to highlight that, after
the items were excluded, the CG deviation was kept within its operational and feasible
range.

It is important to emphasize that, as the Multiprocessing 3-D packing is a post-
optimization procedure, it benefited all solution methods.

The rationale behind this is that, in sequential mode (Shims), items with smaller
volumes (higher edge attractiveness θπk

ij , Equation 4.3) tend to be assigned first to central
pallets, and items with bigger volumes tend to be assigned to the ramp door or to the
forward-positioned pallets; these bigger items are more difficult for the 3-D packer actions.
On mpShims, as all pallets are built in parallel, the size distribution is more uniform, with
a better size diversity to be allocated to each pallet, which is less difficult for the 3-D packer
actions due to the variety of item dimensions for packing. This explains why mpShims
exceeded Shims’ results after the Multiprocessing 3-D packing.

We tested all methods with 126 different instances: six operational scenarios with 2
aircraft sizes and 3 to 7 nodes; and seven randomly generated item sets for three volume
surpluses (1.2, 1.5, and 2.0 times aircraft volume capacities).

Results before 3-D packing

During the solution process of an integer programming problem, relaxation refers to
creating a linear program (LP) by removing the integer constraints from the original
problem. This LP acts as a relaxed version of the problem, allowing decision variables to
take on continuous values within their bounds. In this context, we call it Relaxed MIP.

We ran Algorithm 2 in the 6 scenarios described in Table 6.1, considering 3 methods
for node-by-node solution: the state-of-the-art Gurobi MIP solver, Shims, and mpShims
(Algorithm 15).

In generating the items in each node, we consider 3 values for the parameter surplus.
The results obtained for the function f , with the corresponding run time in seconds, are
shown in Table 7.9 (surplus = 1.2, surplus = 1.5, and surplus = 2.0).

Note that, in Table 7.9 all Relaxed MIP f(G∗) value are italicized to indicate that
these values may not be optimal or feasible as the decision variables are not integers.
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Table 7.9 – Volume surpluses, methods and scenarios results before 3-D packing

Volume Solution Scenarios Norm.

surplus method Results 1 2 3 4 5 6 Speedup

1.2

Relaxed f 12.23 8.67 12.67 15.36 16.29 16.20 -
MIP time (s) 3 13 20 78 198 1103 -

Shims
f 10.34 8.50 12.42 15.06 15.97 15.88 0.97

time (s) < 1 3 5 20 58 352 1.00

mpShims
f 12.23 7.53 12.28 13.20 13.71 13.44 0.91

time (s) < 1 2 2 8 22 120 2.80

1.5

Relaxed f 17.01 12.45 18.02 22.03 23.09 22.35 -
MIP time (s) 4 20 32 115 296 1685 -

Shims
f 14.68 12.21 17.67 21.01 22.64 21.91 0.99

time (s) < 1 2 3 12 33 209 1.00

mpShims
f 16.12 11.81 17.48 17.66 19.81 17.61 0.90

time (s) < 1 1 2 7 20 120 1.70

2.0

Relaxed f 24.56 17.47 25.19 27.94 29.90 27.60 -
MIP time (s) 4 23 34 119 317 1762 -

Shims
f 21.31 17.35 24.24 27.39 29.31 27.06 0.98

time (s) < 1 2 4 14 35 220 1.00

mpShims
f 24.33 17.26 24.70 24.81 27.71 24.93 0.96

time (s) < 1 2 3 9 26 151 1.70

A foundational idea in linear integer programming is that the upper bound is the
objective function value of a linear programming relaxation of the problem, demonstrating
that no integer viable solution can have an objective value greater (in maximization) than
this (VANDERBECK; WOLSEY, 2015).

We solved all scenarios and instances with a MIP solver in a relaxed linear model.
This is good for the reader to have an idea of the real performance differences between
serial and process-based parallel Shims.

Shims had a quality performance very close to the Relaxed MIP solver upper bound
solution, and, as to the Speedup, on average, mpShims was 2 times faster than Shims.
Theoretically, it could be more, but due to the burden of sharing, for reading and writing,
the CG deviation and the list of items among the processes (pallets), the race condition
management limited mpShims performance.
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Results after 3-D packing

Table 7.10 presents the results of the Relaxed MIP solver compared to Shims and
mpShims, after the post-optimization with the multiprocessing 3-D packing.

Although the Relaxed MIP solver results are not always feasible, the multiprocessing
3-D packing turns them feasible regarding dimensions and weight. So, in Table 7.10, we
considered it’s results in the performance comparisons.

Table 7.10 – Volume surpluses, methods and scenarios results after 3-D packing (3Dp)

Volume Solution Scenarios Norm.

surplus method+3Dp Results 1 2 3 4 5 6 Speedup

1.2

Relaxed f 11.47 7.24 10.78 12.06 12.97 12.44 0.95
MIP time (s) 12 51 81 258 601 3161 1.15

Shims
f 9.05 5.11 9.75 10.96 12.86 13.25 0.86

time (s) 16 68 94 323 719 3549 1.00

mpShims
f 12.14 7.29 10.36 12.63 14.04 13.92 0.99

time (s) 9 36 54 192 427 2118 1.70

1.5

Relaxed f 15.83 10.08 15.14 16.87 18.58 17.52 0.97
MIP time (s) 20 83 142 362 996 4741 1.22

Shims
f 11.55 7.61 12.28 15.00 17.55 17.57 0.84

time (s) 25 107 156 498 1217 5743 1.00

mpShims
f 17.05 10.01 15.01 16.75 20.09 17.85 1.00

time (s) 18 64 101 351 828 3879 1.50

2.0

Relaxed f 23.73 15.23 21.96 24.22 26.69 24.29 0.99
MIP time (s) 28 99 185 648 1680 8774 1.00

Shims
f 16.28 10.93 18.16 22.35 25.12 24.53 0.85

time (s) 37 141 196 653 1453 6851 1.22

mpShims
f 24.52 15.18 21.99 24.61 26.94 24.83 1.00

time (s) 27 87 146 496 1080 5160 1.63

The average value of f obtained by mpShims was 0.997, followed by the Relaxed MIP
with 0.971. Shims obtained 0.851, on average.

As to the performance, the average Speedup obtained by mpShims was 1.61, followed
by the Relaxed MIP with 1.12. Shims reached 1.07, on average.

The Relaxed MIP solver results were not always feasible. The infeasible results were
made feasible by the Multiprocessing 3-D packing method.

In terms of quality and speed, mpShims with the Multiprocessing 3-D packing
superseded the sequential Shims results to solve the ACLP-RPDP.
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7.7 Minimization of the pallet unloading movements

Although it was expected at most O(m2) execution steps, as the number of pallets
was small (7 or 18) and it was solved with Gurobi, the increased time was negligible (less
than 1s).

Table 7.11 – Average distances minimization

Before After Improvement
Scenario (m) (m) (%)

1 32.70 28.70 −7.30
2 193.30 188.90 −6.30
3 165.10 153.30 −7.10
4 137.10 132.00 −3.70
5 126.70 122.00 −3.80
6 115.30 110.40 −4.20

Table 7.11 presents the movement minimization in the cargo bay of the next node
destined pallets to the ramp door. Columns Before and After refer to the application
of the current method. On average, the distances from the pallets and the last ramp door
position were diminished by 5% along the tour.



8 Conclusions

In this thesis, we addressed the complex challenge of optimizing air cargo load
planning, routing, pickup, and delivery (ACLP+RPDP). This encompassed intricate
subproblems like air cargo palletization, weight and balance, vehicle routing, and
pickup/delivery logistics. We analyzed the problem in realistic scenarios involving
aircraft payloads of 26,000kg and 75,000kg, employing the standard 463L Master Pallet
and considering multi-leg delivery/pickup tours.

We developed a comprehensive process for planning aircraft loading and routing in
multi-leg missions with return to base. This required tailoring constraints for each
subproblem and implementing an integer programming approach with the Gurobi MIP
solver. While this initial attempt wasn’t able to solve the full ACLP+RPDP, it paved the
way for further development.

Following extensive experimentation with seven methods, six scenarios, and multiple
instances (totaling hundreds of experiments with synthetic data based on real Brazilian
Air Force data), we identified limitations of existing approaches. Five well-known
metaheuristics specifically designed for ACLP+RPDP were then tested.

However, we sought an even more efficient solution. This led to the creation of a novel
heuristic named Shims. Shims boasts exceptionally low search times, making it ideal
for multi-leg airlift planning. Notably, it surpassed existing methods in most scenarios,
demonstrating its effectiveness.

This thesis offers significant academic contributions:

(1) The creation of a fast heuristic: Although Shims was already fast, we
transformed it into a parallel computing heuristic with a 3-D packing
post-optimization process, guaranteeing all items fit onto pallets. This delivers fast
and effective solutions for diverse problem sizes. It also has potential for
application as an online heuristic for dynamic tours and cargo updates.
Additionally, it could be integrated with real-time data analytics for further
refinement of loading and routing efficiency.

(2) Mathematical modeling and validation: We designed and extensively tested
and validated the mathematical model using an integer programming tool.
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(3) A comprehensive solution process: This innovative approach ensures near-
optimal cargo distribution on pallets within the aircraft cargo bay, guaranteeing
balance and maximizing efficiency while minimizing fuel consumption. This output,
including the tour plan and pallet building/arrangement, significantly enhances
airlift safety, ground operation efficiency, and ensures accurate delivery.

(4) Adaptability: Our methodology extends beyond aircraft, proving applicable to
maritime, road, and rail logistics with adjustments to model constraints and space
utilization.

These points clearly align with academic contributions as they contribute to the
theoretical foundation, offer new methods, and extend the existing knowledge in the field.

Furthermore, our testing validated three key hypotheses:

(1) Parallel computing improves Shims performance.
(2) A 3-D packing method becomes operational due to the faster parallel computing

heuristic.
(3) Minimizing pallet movement within the cargo bay proves successful.

We also utilized the irace package to fine-tune Shims parameters, achieving optimal
average performance.

The practical impacts include:

(1) A rapid tool for balanced cargo loading and efficient item selection.
(2) Seamless pickup and delivery operations.
(3) Optimized routes maximizing efficiency and minimizing fuel consumption.
(4) A lightweight tool operable on standard computers.

These impacts directly relate to how this research can be applied outside of an
academic context, affecting industry practices, operational efficiency, and environmental
sustainability.

Future Research Directions:

(1) Optimizing scenarios with non-standard cargo and alternative cargo bay packing
methods.

(2) Solving ACLP+RPDP for multiple and diverse aircraft simultaneously.
(3) Addressing sequencing problems in cargo aircraft with two doors.
(4) Integrating real-time data analytics for further refinement of loading and routing

efficiency.
(5) Application of the proposed methods to other transportation modes.
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This thesis presents a novel approach to ACLP+RPDP, offering valuable contributions
to both academic research and practical applications in airlift operations and beyond.
The developed methodology and Shims heuristic demonstrate significant potential for
improving efficiency, safety, and cost-effectiveness in various transportation and logistics
domains. Future research directions hold promise for further advancements in this critical
field.
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