
Aircraft routing problem model for
fractional fleets using

fault prognostics
Eduardo Afonso Pereira Barreto and

Fernando Teixeira Mendes Teixeira Mendes Abrah~ao
AEROLOGLAB-ITA, Instituto Tecnologico de Aeronautica,

Sao Jose dos Campos, Brazil, and

Wlamir Olivares Loesch Vianna
Embraer SA, Sao Jose dos Campos, Brazil

Abstract

Purpose – The objective of this work is to provide a novel aircraft allocation model for fractional business
aviation. This model may provide decision-makers with alternative routing solutions that take into
consideration preventive maintenance and failure prognostics information. The expected results are more
efficient routing solutions when compared to conventional planning models, to help decision-makers improve
operations and maintenance planning.
Design/methodology/approach –The model is a mixed integer linear problem formulation addressing and
considering preventive maintenance and failure prognostics for optimal operations. Numerical experiments
were performed using both field and synthetic data to validate the proposed method. All instances are solved
using branch, price and cut algorithms from open-source software.
Findings – The results obtained in this study show that the use of failure prognostics information in aircraft
routing can provide improvements in overall planning. By choosing slightly longer flight legs, the flight cost
will increase, but putting an aircraft with a higher risk of failure on a leg inbound to a maintenance base can
reduce maintenance and overall operating cost.
Originality/value –Themodel andmethodprovide decision-makerswith routing solutions that consider new
aspects of planning, not used in previous works, such as failure. Most of the literature focuses on solving
routing problems for large commercial airlines. Considering that, few solutions are found in literature for
fractional business operators, which have their own operational particularities, such as a companymanaging a
fleet of aircraft belonging to multiple shareowners. In such operation, clients may not always fly in the aircraft
that they are shareowners, but an aircraft from the fractional fleet of the same category. Here, the company
managing the aircraft guarantees that an aircraft will be ready to attend client demands in minimum time. One
of the major differences from other models of operation is the dynamic nature of its flight demands, thus
requiring flexible and agile planning limiting the available time to find a routing solution.
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TSP Traveling salesperson problem
US United States
VRP Vehicle routing problem

1. Introduction
The aviation sector is divided, primarily, into three segments; military aviation, scheduled
airlines and general aviation. General aviation is described as any operation outside of the
other two categories. Business aviation is a subdivision of general aviation where aircraft are
used for business purposes.

Business operators differ from commercial airlines not only in the size of aircraft operated,
but also in the legislation that they must follow. Albeit both are in the major category of civil
aviation, commercial airlines are considered scheduled air transport while business aviation
is categorized as general aviation in the definition adopted by the International Civil Aviation
Organization (ICAO) (ICAOdocument STA/10-WP/7, 2009).

In business aviation, there are a few different models of operations (Yao et al., 2005). The
first is the sole owner of an aircraft. In this case, the owner is responsible for all operation and
costs. Next is the shared model where partners acquire an aircraft together and establish a
proportion of usage depending on the size of the share. However, the owners will still have all
the responsibilities as the previous model but with an expected benefit of diluted cost. There
is also the leasing model, which is same as the previous ones, the owner is responsible for
maintaining and managing the aircraft. This model, however, does not require the lessee to
expend the large sum of the price of the aircraft, but pays a periodic fee for its usage. Next,
there is the charter model in which the customer acquires the right to use an aircraft for the
requested flight and pay usually by the hour. In this way the customer has no additional cost
besides those already contracted, but the cost of the flight hour will tend to be significantly
higher than the previous models. Finally, there is the fractional model, which is the focus of
this work. In this case, the customer buys a share of an aircraft that is managed by a company
and that share will give him or her the right to a predetermined number of flight hours per
year. These shares can be as small as 1/16th of the aircraft, which in general allows for 50
flight hours per year. In this model, the company is responsible for maintaining and
managing the fleet as well as making them available for the client needs. The client will then
pay a fixed administration fee and an hourly fee for usage (Hicks et al., 2005; Martin
et al., 2003).

This type of operation brings a few unique challenges, among which are the necessity of
agile planning due to the short request period and managing conflicting demands from
customers.

Since business aircraft tend to be smaller, there is a wider range of airports from which
they can operate. This allows greater flexibility in operation as is explained below for a point-
to-point network. However, this type of network also poses logistical challenges for the fleet
manager, like the lack of a centralized maintenance structure and fewer maintenance
resources at smaller airports. The use of these smaller airports increases the flight options
from around 400 airports, for scheduled airlines, to more than 5,100 airports, for general
aviation, in the USA alone (2019 Annual Report – GAMA, 2018).

As seen in Gronkvist (2005), there are three types of operating networks in the airline
industry, illustrated in Figure 1. The first is the linear network, the least used of them all in the
aeronautical sector. Here, all the airports are connected by a single tour. In other words, there
is a single flight path followed by all aircraft.

Next comes the point-to-point network. For this case, all airports are connected to each
other by a single flight. Low-cost commercial airlines and business aviation operators mostly
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use this type of network, allowing them to bypass busy and expensive airports guaranteeing
improved flexibility.

The last type of network and most used by commercial airlines is the hub-and-spoke
network. In this type of network, there is a main hub of operation where all flights arrive at or
depart from. This model is the preferred method of large commercial airlines because it is
easier to mitigate operation disruptions and allows operators to have a single maintenance
station to service a large portion of their fleet (Gronkvist, 2005).

For both business and commercial aviation, the operational planning of flights is usually
segmented into four main phases (Al-Thani et al., 2016; Basdere and Bilge, 2014; Diaz-
Ramirez et al., 2013; Eltoukhy et al., 2017a, b; Khaled et al., 2018; Kohl et al., 2007), shown in
Figure 2. The first is the flight scheduling phase, followed by the fleet assignment phase, then
the tail assignment or aircraft maintenance routing phase and finally the crew
assignment phase.

The flight scheduling phase is when the flight legs are established. This step is crucial for
the airliners since only flights with sufficient demand must be established in order to
guarantee profitability. However, for fractional operators in the business aviation sector, this
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phase does not depend on the operator. The flight demands come directly from the customers
and the operator manages the fleet of various owners guaranteeing that all flights are
attended.

In the fleet assignment phase, the operator must determine which type of aircraft is more
adequate to attend each flight leg. Again, for commercial aviation, this process is also
strategic since commercial airlines usually have mixed fleets and each type of aircraft may
have a different passenger capacity and flight cost. This implicates the number of seats that
will be offered for each flight leg, as well as the fuel consumption, fixed flight costs and
eventual operating restrictions due to airport capacity to receive certain aircraft. Fractional
owners, on the other hand, own a fraction of a specific aircraft model; hence, the demands
coming from a client will be allocated to a fleet of aircraft of the same model that he or she
owns. In the case when a model of the aircraft owned by that customer cannot attend the
demand, the operatormay find an alternative way to attend the customer, including the use of
a larger aircraft or paying a chartered flight. Although this aspect of planning is outside of the
scope of this work, a heterogeneous fleet is tested to expand the applicability of the proposed
model, providing the possibility of merging the fleet assignment and aircraft maintenance
routing phases.

The next phase involves building the routes that will connect each flight leg in the demand
and allocating a specific tail number to each route. In this phase, commercial airlines have
more flexibility in planning due to the hub-and-spoke network. By concentrating
maintenance workshops and most passenger flown at hubs, switches between tail
numbers are easier, thus mitigating the effects of disruptions. Since fractional operators
operate mostly in a point-to-point network, aircraft do not always return to a home base with
maintenance capacity and there is no guarantee that flight legs will depart from the same
airport where a previous flight arrives. This implies frequent empty flight legs to relocate
aircraft in order to attend demands or perform maintenance. This phase will be the focus of
this work, since there is a clear opportunity for cost reduction inminimizing empty flight legs.

The last phase dealswith pairing crews to aircraft in order to create a roster for employees.
This step is also important since the crew wages is one of the highest costs for airlines after
fuel. The regulatory aspect of crew labor increases the challenge of this activity, setting strict
limitations forworking hours and rest periods thatmay even change from country to country.

Maintenance is a crucial part in flight planning. Apart from being an additional cost in
operations, it can also limit its availability. From Ben-Daya et al. (2009), we have three main
types of maintenance: reactive or corrective maintenance, preventive maintenance and
predictive maintenance.

Corrective or reactive maintenance tasks are carried out after a failure occurs. A failure
that happens out of a maintenance base incurs in greater costs for the fleet manager since
mechanics and equipment may need to be transported to the location of the aircraft.

Preventive maintenance on the other hand is scheduled and has the purpose of restoring
the aircraft to a safe state. Preventive maintenance is a usage-based concept in which parts
are repaired or replaced at certain intervals, independent of current condition (Samaranayake
and Kiridena, 2012). Considering aircraft preventive maintenance, activities can have three
types of thresholds: flight hour limits, calendar limits and cycle limits (Martin et al., 2003).

Predictive maintenance is a concept where cost-effective tools are used to monitor the
condition of critical equipment. Instead of relying on average life statistics, direct monitoring
estimates the remaining useful life (RUL) of the part (Mobley, 2002).

Failure prognostics information is a potentially powerful tool in improving aircraft
routing. By allocating aircraft with higher failure probabilities to flight legs inbound for
maintenance bases, the maintenance costs can be reduced, as the aircraft will be somewhere
prepared for aircraft-on-ground (AOG) events. In this study, AOG events are considered the
faulty situations when an aircraft is not able to be dispatched unless the failure is repaired.
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This information may also help operators to engage troubleshooting resources such as
spare parts and other support equipment before the event occurs, reducing lead times and
costs. Since fractional operators have multiple maintenance bases and a large amount of
possible flight routes, being able to plan for corrective maintenance events could give
fractional operators a competitive advantage in terms of fleet availability and
maintenance costs.

The main objective of this work is to formulate mathematically and solve the routing
problem for fractional business operations including preventive maintenance and failure
prognostics aspects and data.

Within the context of the problem, this work contributes to the exploration of an important
and promising part of the problem as a whole. The modeling, even with the premises
observed, addresses the supportability of homogeneous and heterogeneous fleets of
executive aircraft in a fractional fleet when scheduling flights taking into account both legacy
standards of preventive maintenance and the use of information from prognostic models.
Naturally, this work paves the way for other modeling by eliminating the premises and
completing the systemic understanding of the aircraft allocation problem.

This text is organized in the followingmanner. Section 2 presents a review of the literature
concerning the topics of this work. The methodological approach is detailed in Section 3, and
the application of the method and discussion are presented in Section 4. Finally, Section 5
concludes the research.

2. Literature review
In the literature much attention has been focused on large commercial airline problems,
(Eltoukhy et al., 2017a, b; Haouari et al., 2011; Khaled et al., 2018; Kohl et al., 2007; Liang and
Chaovalitwongse, 2012; Liang et al., 2015; Maher et al., 2018; Warburg et al., 2008). On the
other hand, few researches concerning the business aviation operation have been found.
Some of these works include Martin et al. (2003), Yao et al. (2005) and Yao et al. (2008).

In works focused on fractional operations, the main aspect treated was the crew-
scheduling problem. Martin et al. (2003), Hicks et al. (2005), Yao et al. (2005) and Yao et al.
(2008) all solved the crew-scheduling problem using aircraft maintenance routing as a
feasibility constraint, thus not necessarily optimizing the maintenance routing.

As explained in Eltoukhy et al. (2017a) andMaher et al. (2018), there are manymodels used
to construct a routing solution for aircraft. Some authors used a string-based approachwhere
the strings are a sequence of connected flights. Generally, for airlines, the strings begin and
end at the same base. This method is usually formulated as a set partitioning problems and
solved using a branch and price strategy. This method has one drawback, which is the large
number of strings generated taking a large computational time.

Another approach is the network-based method. This method can be solved in a
considerably smaller amount of time when compared to the string-based method. The
network model uses timelines for different stations, including airports and maintenance
stations, in order to depict the flow of the aircraft as shown in Liang and
Chaovalitwongse (2012).

The third method of solution is the big cycle approach. Some authors associated the
aircraft routing problem with the asymmetric traveling salesperson problem (ATSP) due to
the similarities between them (Clarke et al., 1997; Mak and Boland, 2000). The first focuses on
finding feasible maintenance rotation problem by formulating the problem of aircraft
maintenance routing problem (AMRP) as an ATSP and the second solving with
metaheuristics the AMRP formulated as an ATSP.

In commercial aviation, the planning horizon is a well-defined parameter when it comes to
establishing operations. In this way, the planning can be done in such a way to create cyclical
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routes that repeat in periods of days, weeks or even months. By doing this, the distribution of
activities among aircraft can be more easily controlled. In commercial aviation, this is crucial
due to the large amount of flights and aircraft to manage.

However, for the business aviation operator, the planning horizon is inmost part out of the
hands of the operator. Since the flights are determined by customer demand, the request can
come from months in advance to as soon as a few hours from departure. This stochastic
demand complicates planning to the point that maintenance activities may overlap flights
and cause unforeseen unavailability.

The main works dealing with fractional ownership problem are presented in Table 1.
Martin et al. (2003) present an integrated system that provides routing solutions based on a
mixed-integer linear programming model solved with CPLEX. The focus of this work is
primarily in crew scheduling and some simplifications are used to merge aircraft and crew
scheduling and preventive maintenance is treated as fixed stops in the planning. Hicks et al.
(2005) focused on modeling constraints and cost factors for another integrated system used
for fractional operations. To solve thismodel, they used GENCOL, a column generation based
software developed by GERAD, an operations research center. This formulation allows
15-min delays in planning. Yao et al. (2005) continue to study the effects of flexible time
windows for departure times, which was solved using CPLEX. This approach showed
promising results when compared to heuristically determined routes used by the fractional
operator. By using more flexible crew swapping strategies, departure times and modifying
demand, Yao et al. (2008) are able to improve operating costs in their study. A column
generation approach is used in this study and maintenance events are included in the
planning as they occur and the problem is resolved after that. Finally, Munari and Alvarez
(2019) continue to use flexible time windows for flight departures, anticipating or delaying
flights, in planning. Themain contribution in this work is allowing clients to be upgraded to a
larger aircraft if the upgrade will result in a lower overall cost. Flight upgrades usually
happen when no aircraft of the contracted category are available for a client, in this case, an
aircraft of a higher category is made available even if its operating cost is higher.

Table 1 provides a comparison between the major works treating business aviation cases,
including fractional operations. Here the solutionmethods are compared aswell as the overall
contributions.

2.1 Maintenance
Themodels in previous literature introducemaintenance requirements in various ways.Most
works create mandatory flight legs in the demanded activities, which have the duration of the
checks, and the origin and destination of the “flight” are the same maintenance station.

Authors Solution method Contribution

Martin et al. (2003) CPLEX Development of a decision support tool
Hicks et al. (2005) CG (GENCOL) Constraint and cost factor modelling
Yao et al. (2005) Set partitioning, CPLEX Flexible time windows for departure time
Yao et al. (2008) Set partitioning, CG Considering demands from customers that are not

fractional owners
Munari and Alvarez (2019) CPLEX Inclusion of service upgrade possibility
This work B, C and P (Gurobi) Failure prognostics considered during routing

Note(s): CG 5 Column Generation, B, C and P 5 Branch, price and cut

Table 1.
Literature review
comparison
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In this work, however, we treat these maintenance events with more flexibility, by
separating the calendar-specific and flight-hour-specific maintenance activities and allowing
a wider window to accomplish them.

Despite many works treating the problem of including maintenance activities in the
planning process, few acknowledge the different types of preventive maintenance (Khaled
et al., 2017; Khaled et al., 2018; Martin et al., 2003) and the possibility of having flexibility in
maintenance allocation (Munari and Alvarez, 2019).

2.2 Failure prognostics
IVHM is an integrated view of a system of systems, monitoring the health of each system to
assist in the decision-making process (Jennions, 2013). In this way, this approach provides the
ability to recognize, evaluate, isolate and mitigate faults in the system (Jiang et al., 2017). An
important part of IVHM is the prognostics and health management (PHM).

PHM provides an estimated RUL for components or systems based on collected data and
estimated future usage. Modern aircraft provide more data than older models and thus an
opportunity to improve operations and maintenance planning.

Over the last years, many works used PHM and IVHM to improve maintenance, design
and thus reduce operating costs. Vianna et al. (2015) used PHM to estimate AOG events and
better plan aircraft line maintenance. Scanff et al. (2007) researched the impact of PHM on life
cycle cost (LCC) for helicopter avionics. The RUL provided by PHM is also used in a system-
level analysis to aid in the maintenance decision process regarding component replacement
(Rodrigues et al., 2015).

Rodrigues et al. (2012) study possible opportunities brought on by using PHM techniques
for aircraft operators. The main aspects touched in this work are inventory management
optimization, scheduled maintenance planning, reduction of unscheduled maintenance tasks,
improved troubleshooting and intelligent aircraft allocation. The latter is the area of interest
of this work. All of these topics also have potential benefits for personnel management,
helping to isolate failure causes more rapidly and efficiently and planning appropriate man
power for each maintenance event beforehand. The two most prominent benefits cited are
increased fleet availability and reduced operational costs, by placing technicians and parts
closer to predicted maintenance events, reducing logistics costs and mean time to repair.

In thiswork, we use a small part of PHM, in the form of failure prognostics, in an attempt to
improve aircraft routing and reduce maintenance costs. Usually, the most sought after
information derived from failure prognostics is the RUL of an equipment or system. Due to
the uncertain nature of this type of prediction data, there are some inherent variabilities in
RUL. The two main uncertainties are the actual failure threshold and the evolution of the
degradation (Tobon-Mejia et al., 2012). Therefore, the RUL is better represented as a
distribution rather than a certain value.

2.3 Branch, cut and price
Branch and bound algorithms are designed to solve discrete and combinatorial optimization
problems (Ralphs et al., 2010). It consists of enumerating candidate solutions for a relaxed
version of the original problem, allowing infeasible solutions. At each branch, the solutions
with variables that do not obey certain restrictions, such as integrality restrictions, are
branched out further until feasible solutions are obtained, thus forming a tree of solutions.
Each branch is compared to upper and lower branches in order to obtain the best solution.

The efficiency of the branch and boundmethod depends on the tightness of the relaxation
applied. In this context, the branch and cut algorithms provide a relaxed set of solutions that
are closer to the feasible solution set than the simpler branch and bound strategy. By adding
globally valid inequalities, the search space is reduced as they affect all branches of the
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solution tree (Ralphs et al., 2010). One of the ways to generate these inequalities is to use
Dantzig–Wolfe decomposition (Desrosiers and L€ubbecke, 2010).

Branch and price is another method used to tighten the relaxation of the original problem.
Here, this is done by column generation. This may result in a large amount of variables in the
formulation, therefore the initial relaxation starts with a small subset of variables (Ralphs
et al., 2010; Desrosiers and L€ubbecke, 2010).

The combination of the two previous methods results in the branch, price and cut
algorithm. By using both strategies, the solution space is established more efficiently.

3. Methodology and modeling
Themodeling and numerical implementation used in this work were applied to two cases, the
first, a standard planning approachwithout considering the available failure prognostics and
the second, a planning considering failure prognostics.

In conventional planning, routing is defined in such way that connection costs are
minimized and preventivemaintenance is performed accordingly. In the proposedmodel, also
failure prognostics are considered, whereas connection costs are weighed against the
maintenance cost considering aircraft that present a higher failure probability prioritizing
flight legs inbound for maintenance bases.

Each flight leg of these sequences has an origin, a destination, a departure time and a
duration. Turnaround time (TAT) after landing is assumed constant, and the flight time
between the cities involved is also known. At the initial planning period, the position of each
aircraft is known, as well as its accumulated flight hours.

For this work, the individual cost of operating flights with each aircraft is considered the
same (no aircraft is more efficient than any other), the factor that will most influence in
planning is the connection between each flight.

Ideally, there would be no connection flights in the final planning, as is the case for most
commercial airline operations. This is not, however, a realistic assumption for fractional
operators. Thus, minimizing the flight time necessary in connection flights is crucial to
obtaining better solutions.

Since it is not the focus of this work to generate failure prognostics data, the failure
prognostics used is obtained from supervised machine learning algorithms that use message
history from the central maintenance computer and failure occurrences from maintenance
and pilot reports. The method was based on the solution presented in (Baptista et al., 2016).
The failure prognostics information used in this work is considered as a discrete failure
probability distribution as illustrated in Figure 3.

This expected RUL changes with the rolling time windows used in this work, simulating
an evolution of the failure mode being monitored. The important aspect of this data for this
work is the form of the failure prognostics information that is fed to the proposed model.

Some assumptions are made in order to treat the problem and are presented further:

(1) The position and schedule of each aircraft are known at the moment of planning.

(2) Customer requests can be accepted as soon as 6 h prior to departure.

(3) The flight time between each city is considered constant and calculated as an
average time of known flights plus an SD, following a normal distribution.

(4) After a constant TAT, the aircraft will be ready for take-off.

(5) The inability to attend a flight will incur a cancellation fee for the operator.

(6) Connection between every city is permitted.
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(7) Only one aircraft can attend each flight.

(8) The fleet is composed of only one type of aircraft.

(9) Only one failure occurs at a time.

(10) Maintenance activities are performed in sequence.

(11) Monitored failure result in AOG events.

(12) Penalties are constant for maintenance events and cancelled flights.

Figure 4 depicts a small scenario of how the problem is formulated in the present work. In this
case the demands are denoted as i, j and k, each with its departure and arrival locations,
departure time s and duration dur. Each possible connection between activities is represented
by x and has duration c. As not to pollute the image and have a clearer idea of operations,
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some of the connection arcs are omitted in Figure 4. These arcs are x0kt, xikt, xjit, xkit and xkjt.
In this case, the connection between i and k, xikt is not explicit in the figure, butwould present a
duration of cikt ¼ 0 since flight k departs from the location where flight i arrives, assuming
that sk ≥ si þ duri þ TAT.

The mathematical formulation developed in this work is described further.
Objective function:

min
X

t∈T

X

i∈F 0

X

j∈F

ðCFHðcijt þ durjÞxijtÞ þ Nc Cc �
X

t∈TP

X

i∈F 0

X

j∈P

ðf xijtÞ (1)

Subject to:
X

t∈T

X

i∈F 0
xijt ¼ 1; ∀j∈F (2)

X

j∈F

xijt �
X

j∈F

xjit ≥ 0; ∀i∈F
0
; ∀t ∈T (3)

X

j∈F

xijt ≤ 1; i ¼ 0; ∀t ∈T (4)

Nc þ
X

t∈T

X

i∈F 0

X

j∈F

xijt ¼ Ntot (5)

X

j∈M

xijt ≤ 1; ∀i∈F
0
; ∀t ∈T (6)

sit þ cijt þ duri þ Kijtðxijt � 1Þ � sjt ≤ 0; ∀i∈A
0
; ∀j∈A; ∀t ∈T (7)

aj
X

i∈A0
xijt ≤ sjt; ∀j∈A; ∀t ∈T (8)

bj
X

j∈F

xijt ≥ sjt ; ∀j∈A; ∀t ∈T (9)

s0t ¼ 0; ∀t ∈T (10)

yit þ cijt þ duri þ K2ijtðxijt � 1Þ � yjt ≤ 0; ∀i∈A
0
; ∀j∈A; ∀t ∈T (11)

limt

X

i∈A

xijt ≥ yjt; ∀j∈A; ∀t ∈T (12)

y0t ¼ FHt; ∀t ∈T (13)

xijt ∈ f0; 1g; ∀i∈F
0
; ∀j∈F; ∀t ∈T (14)

Where T is the set of aircraft and TP is a subset of T containing the aircraft that have a
probability of failing as given by the failure prognostics method. F is the set of flights and F 0

is the set of flights including the origin of each aircraft. P is a subset of F containing flights
whose destination coincides with a maintenance base such that P ⊂F. The connections to
maintenance bases are given in set M. A and A0 represent the union of M with F and F 0,
respectively.

Equation (1) defines the objective function that aims to minimize the total costs of
connections between flights and cancelled flights. In the formulation, xijt is a binary variable
equal to 1 if aircraft t operates flight i followed by flight j and zero otherwise. The flight hours
to connect from flight i to flight j and the duration of flight j are represented by cijt and durj,
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respectively. The number of cancelled flights is determined by the variableNc. CFH is the cost
per flight hour and Cc is the cost for a cancelled flight. One of the points that set the proposed
model apart from previous works is the third part of the objective function, here we establish
a factor f that encourages the use of priority flights by aircraft with a risk of a failure
occurrence. The priority flight legs and higher risk tail numbers are obtained from the failure
prognostics information.

In this sense, when a failure probability is identified by a prognostics system, the model
reads that information and applies a cost reduction factor to each priority flight leg whose
departure date precedes the most likely date of the failure occurrence as per the failure
prognostics distribution. This cost reduction factor is then reduced as the departure dates get
further and further from the expected failure date.

Equation (2) denotes constraints that guarantee that each flight is flown once and by only
one aircraft. The continuity constraints defined by Equation (3) ensure that an aircraft
connecting to a given flight also connects from it and Equation (4) makes it so that each
aircraft departs from its position at the beginning of the planning period. Equation (5) verifies
the number of cancelled flights by verifying that the sumof cancelled flights,Nc, and operated
flights, xijt, are equal to the total number of flights, Ntot.

To establish that each maintenance activity will only be performed once and at a single
maintenance base, we have Equation (6). Equation (7) sets the time windows for each flight
while constraints (8) and (9) set the respective lower and upper bounds of the time windows.
The initial time windows are fixed by Equation (10). In these equations sit and sjt are the time
windows at which aircraft t starts flight i and j, respectively. The duration of flight i is
expressed as duri. Kijt is a large enough number such that constraint (7) is deactivated when
xijt ¼ 0 and is given by Kijt ¼ cijt þ duri þ ai þ si.

Similar to constraint (7), constraint (11) determines the flight hours accumulated by each
aircraft given the allocated flights. Here, yit indicates the previous accumulated flight hours
since completing flight i and yjt the accumulated flight hours after completing flight j for
aircraft t. Analogous to Kijt, K2ijt ¼ yit þ cijt þ duri þ limt. Constraints (12) prohibit the
accumulated flight hours from exceeding the utilization limit of each aircraft, where limt is the
maximum flight hours each aircraft t is allowed to fly before needing preventivemaintenance.
The accumulated flight hours of each aircraft at the start of planning are set in constraints
(13), FHt is the known accumulated flight hours of each aircraft t.

Constraints (7)–(13) also set this model apart from previous works as they distinguish
calendar and flight hour based preventive maintenance giving each a distinct window to be
accomplished based on aircraft usage.

Equations (14) set the variables xijt as binary.
The total cost analyzed in this study is composed of the flight hour costs from connections

and flight durations, cancellation costs, preventive maintenance costs and corrective
maintenance costs as described in Equation (15). The total maintenance cost is the sum of
corrective and preventive maintenance costs, as shown in Equation (16). Here, Cpm is the
preventive maintenance cost and Ccm is the corrective maintenance cost.

X

t∈T

X

i∈F 0

X

j∈F

ðCFHðcijt þ durjÞxijtÞ þ Nc Cc þ
X

t∈T

X

i∈F 0

X

j∈M

ðCpmxijtÞ þ Ccm (15)

X

t∈T

X

i∈F 0

X

j∈M

ðCpmxijtÞ þ Ccm (16)

A small alteration is introduced into the objective function and cost equation, Equations (1)
and (15), in order to support a heterogeneous fleet of aircraft. Because each aircraft is already
treated as a unique individual in this routing formulation, by making the flight hour cost
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variable, CFH, dependent of aircraft t, CFHt
, a different flight hour cost can be assigned to each

aircraft. Although the average flight hours between different bases were not altered in this
work for different types of aircraft, no alterations to the presented formulation are needed to
apply this, only the input data of cijt would need changing.

Two different scenarios are considered in this work; one considering the traditional
planning without considering any prognostics data and the other where prognostics data is
taken into consideration during the planning.

In the first scenario, a standard solution is obtained from a formulation that does not take
failure prognostics data into account. The second scenario on the other hand generates a
solution that considers available failure prognostics in an attempt to avoid failure
occurrences out of base.

4. Results and discussion
All tests presented in this work were implemented and run in RStudio version 1.0.143 using
an Intel Xeon 2.70 GHz desktop with 64 GB RAM, running Windows 7 Professional 64 bit
operating system. Gurobi optimizer 8.1.1 was used to solve the instances in this study. The
objective function and all restrictions were built into a Gurobi model structure, including
vectors containing the objective function, inequality signs, constraint limits, variable types
and a constraintmatrix. No execution time or iteration limits were set, and default parameters
were used.

Each data set is composed of 117 flights, for the real case, and 119 flights, for the
generated cases, 10 aircraft and 2 available maintenance bases. The data sets have 95 bases
where aircraft can go to, including the two maintenance bases. Homogeneous and
heterogeneous fleets are also considered in this work. For this, the ten aircraft are divided
into three different types of aircraft, each type having a different operating costs in the
heterogeneous fleet.

Tables 2 and 3 present the optimal results obtained for a conventional planning model
and the proposed planning model considering failure prognostics using a homogeneous
fleet, respectively. In both tables the first column specifies the data set tested, where REAL
is used for the real instance provided by the fractional operator and GD are the generated
instances. The second and third columns respectively present the total deadhead and live
flight hours of each schedule. The maintenance costs and total costs are displayed in the

Dataset Deadhead Live Maintenance cost Total cost Solver time

Real 102.14 166.54 95,230 793,798 14.57
GD2 130.76 218.25 95,470 1,002,896 20.76
GD3 106.86 224.54 76,240 937,880 18.35
GD4 119.63 235.03 95,470 1,017,586 15.36
GD5 113.2 220.26 95,470 962,466 41.49
GD6 120.69 223.77 62,770 958,366 57.7
GD7 129.01 224.65 95,470 1,014,986 48.36
GD8 108.76 222.93 95,230 957,624 53.98
GD9 116.13 230.92 137,670 1,040,000 35.51
GD10 108.21 217.72 95,470 942,888 51.86
GD11 115.57 238.57 95,230 1,015,890 53.86
GD12 105.84 222.47 80,230 933,836 51.14
GD13 120.07 226.31 137,430 1,038,018 55.24

Table 2.
Optimal results using
conventional planning
for homogeneous fleet
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fourth and fifth columns, respectively. The last column shows the total processing time for
each instance.

Themaintenance and total costs are computed with Equations (15) and (16), by testing the
obtained schedules against actual events, including corrective maintenance events.
Therefore, maintenance costs include both preventive and corrective maintenance. The
solver time is counted in seconds.

The corrective maintenance costs are as follows:

(1) Failure 1 costs:

� In-base: 15,000

� Out-of-base: 30,000

(2) Failure 2 costs:

� In-base: 4,000

� Out-of-base: 8,000

(3) Failure 3 costs:

� In-base: 4,000

� Out-of-base: 8,000

Although the deadhead flight hour tends to be higher for the proposed model considering
failure prognostics, this behavior is expected as this model favors legs that provide a better
maintenance opportunities. The conventional model on the other handwill always choose the
alternative with the lowest deadhead connections. In some cases, however, the model using
prognostics data provides a better solution when considering corrective maintenance events
as probable failure conditions are taken into consideration.

For the real instance and generated instance GD3, we are able to see this occur, although
the deadhead flights are longer, the savings brought on by opportune positioning result in
one aircraft being at a maintenance base when it has an unexpected failure that in turn
reduces the maintenance costs. Since the reduction in maintenance costs outweighs the extra
flight hours, the overall costs are also reduced.

Similarly to Tables 2, 3, 4, and 5 present the optimal results obtained using a
heterogeneous fleet for the conventional and proposed planning models, respectively.

Dataset Deadhead Live Maintenance cost Total cost Solver time

Real 105.21 166.54 80,230 786,780 13.76
GD2 131.74 218.25 95,230 1,005,204 18.88
GD3 103 224.54 61,000 912,604 16.73
GD4 126.93 235.03 95,230 1,036,326 15.55
GD5 112.24 220.26 95,230 959,730 45.19
GD6 123.77 223.77 63,010 966,614 53.54
GD7 128.18 224.65 137,670 1,055,028 48.61
GD8 111.15 222.93 95,230 963,838 50.51
GD9 115.06 230.92 137,670 1,037,218 36.2
GD10 105.05 217.72 95,230 934,432 45.06
GD11 115.97 238.57 95,230 1,017,034 51.4
GD12 104.18 222.47 80,230 929,520 49.78
GD13 123.11 226.31 122,430 1,030,922 56.92

Table 3.
Optimal results using

proposed model
planning for

homogeneous fleet
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As cited previously, three different aircraft types are considered in this work, and their
operating costs are as follows:

(1) Type 1: 2,600

(2) Type 2: 3,000

(3) Type 3: 3,300

In the tested scenarios, the 10 aircraft are divided into 4 of type 1, 3 of type 2 and 3 of type 3.
The planning window used of 20 flights provides an average planning window of three

days. In this way, the processing times for all 117 and 119 flights, for real and generated data
respectively, in the span of 17 dayswerewithin an acceptable limit. Taking into consideration
that planning has to be possible under a few hours since new flights may arise with a few
hours of notice. Since the processing times for both models are very similar, and for the
presented cases are all under 12 min, the decision-maker could compare both models and
choosewhich one better serves their current situation. Although having a heterogeneous fleet
weighs a bit more on the solving algorithm when compared to the homogeneous fleet cases,
the running times are well within acceptable boundaries.

Tables 6 and 7 present the percentage gains and losses in deadhead flight times and
costs provided by the model using prognostics data. In terms of proportional gains, the

Dataset Deadhead Live Maintenance cost Total cost Solver time

Real 100.19 166.54 93,700 7,874,901 43.83
GD2 129.75 218.25 95,470 10,234,442 107.77
GD3 97.46 224.54 120,210 9,282,613 82.81
GD4 122.83 235.03 95,470 10,509,862 124.47
GD5 117.07 220.26 95,470 9,914,779 95.95
GD6 123.2 223.77 63,010 10,138,987 183.67
GD7 128.92 224.65 95,470 10,390,611 121.03
GD8 115.61 222.93 137,670 10,011,770 88.94
GD9 125.33 230.92 137,670 10,463,869 88.91
GD10 109.71 217.72 95,470 9,689,169 112.73
GD11 119.7 238.57 80,470 10,502,187 95.39
GD12 116.21 222.47 95,470 9,917,416 106.74
GD13 128.94 226.31 137,670 10,467,971 709.62

Dataset Deadhead Live Maintenance cost Total cost Solver time

Real 99.9 166.54 78,460 7,857,610 43.85
GD2 130.39 218.25 80,470 10,238,194 136.55
GD3 100.55 224.54 78,010 9,295,440 114.63
GD4 126.74 235.03 80,470 10,562,545 92.92
GD5 117.26 220.26 95,470 9,937,633 97.08
GD6 127.29 223.77 63,010 10,255,308 127.76
GD7 129.21 224.65 95,470 10,426,650 86.17
GD8 117.19 222.93 80,470 9,922,047 91.43
GD9 120.03 230.92 80,470 10,262,513 58.93
GD10 110.56 217.72 95,470 9,672,118 127.65
GD11 120.78 238.57 80,470 10,540,863 115.28
GD12 117.43 222.47 80,470 9,935,232 95.23
GD13 125.67 226.31 80,470 10,372,974 152.31

Table 4.
Optimal results using
conventional model
planning for
heterogeneous fleet

Table 5.
Optimal results using
proposed model
planning for
heterogeneous fleet
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proposedmodel provides a cost reduction of up to 2.70% and a possible increase in costs of
3.95% for the homogeneous fleet given that there are opportune flights to improve
maintenance planning. However, on average, the total cost and deadhead flight hours were
0.11 and 0.54% higher for the proposed model. More deadhead hours are expected since
the proposed model focuses on finding better maintenance opportunities rather than
fastest route, and in that sense Table 6 shows that on average maintenance costs are
reduced by 0.24% for homogeneous fleet. The unexpected average increase in total cost
happened because of generated case 7, where although the route encountered by the
proposed model was shorter, the preventive maintenance costs incurred were higher than
that of the conventional model. The corrective maintenance costs, however, were the same
for both models.

Similarly, Tables 6 and 7 provide a comparison between the proposed and conventional
routing models for heterogeneous fleet. Like the scenarios using homogeneous fleet,
heterogeneous fleet scenarios have longer connecting flight hours and a reduced average
maintenance cost. In these cases, the gains inmaintenance costs are more significant than the
previous scenarios, reflecting on the average total cost reduction.

Dataset ΔDeadhead ΔTotal cost ΔMaintenance cost

Real 3.01% �0.88% �15.75%
GD2 0.75% 0.23% �0.25%
GD3 �3.61% �2.70% �19.99%
GD4 6.10% 1.84% �0.25%
GD5 �0.85% �0.28% �0.25%
GD6 2.55% 0.86% 0.38%
GD7 �0.64% 3.95% 44.20%
GD8 2.20% 0.65% 0.00%
GD9 �0.92% �0.27% 0.00%
GD10 �2.92% �0.90% �0.25%
GD11 0.35% 0.11% 0.00%
GD12 �1.57% �0.46% 0.00%
GD13 2.53% �0.68% �10.91%

0.54% 0.11% �0.24%

Dataset ΔDeadhead ΔTotal cost ΔMaintenance cost

Real �0.29% �0.22% �16.26%
GD2 0.49% 0.04% �15.71%
GD3 3.17% 0.14% �35.11%
GD4 3.18% 0.50% �15.71%
GD5 0.16% 0.23% 0.00%
GD6 3.32% 1.15% 0.00%
GD7 0.22% 0.35% 0.00%
GD8 1.37% �0.90% �41.55%
GD9 �4.23% �1.92% �41.55%
GD10 0.77% �0.18% 0.00%
GD11 0.90% 0.37% 0.00%
GD12 1.05% 0.18% �15.71%
GD13 �2.54% �0.91% �41.55%

0.58% �0.09% �17.17%

Table 6.
Comparison for

homogeneous fleet

Table 7.
Comparison for

heterogeneous fleet
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In the experiments, four different failure events are considered. Tables 8 and 9 show the
type of failure that occurred in each event andwhether themaintenancewas done in or out-of-
base in each instance for homogeneous and heterogeneous fleets respectively. The first and
second lines enumerate each event and detail what type of failure occurred, respectively. The
following lines describe whether each event was done in or out of base for each solution. From
Table 8, we see that the proposed model using prognostics data provided four opportunities
for in-base maintenance while conventional planning provided only two for homogeneous
fleet, reducing maintenance costs. Likewise, for heterogeneous fleet, Table 9 shows that in
nine cases the proposedmodel was able to find routeswith in-basemaintenance opportunities
versus only two in the conventional model.

The benefits of the new plan extend from the operational decision-maker, responsible for
determining routes, to the maintenance planner, responsible for scheduling maintenance
operations. Apart from the potential cost reductions derived from the new planning, by
indicating routes with a greater probability of having aircraft in a maintenance base, the
strain onmaintenance personnel is reduced. The reduction of out-of-base maintenance events
reduces in turn disruptions in the already planned maintenance scheduling.

Even if there are no available routes ending or beginning at maintenance bases, failure
prognostics information can assist AOG anticipation and preventive parts, personnel and
other equipment allocation. By knowing the failures that might occur and reducing
troubleshooting time, asmentioned in Rodrigues et al. (2012), the appropriatemechanic can be
prepared beforehand.

Events
1 2 3 4

Failure 1 2 3 1
Real Out Out Out Out
Real FP In Out Out Out
GD2 Out Out Out Out
GD2 FP Out Out Out Out
GD3 Out Out Out Out
GD3 FP In Out Out Out
GD4 Out Out Out Out
GD4 FP Out Out Out Out
GD5 Out Out Out Out
GD5 FP Out Out Out Out
GD6 Out Out Out In
GD6 FP Out Out Out In
GD7 Out Out Out Out
GD7 FP Out Out Out Out
GD8 Out Out Out Out
GD8 FP Out Out Out Out
GD9 Out Out Out Out
GD9 FP Out Out Out Out
GD10 Out Out Out Out
GD10 FP Out Out Out Out
GD11 Out Out Out Out
GD11 FP Out Out Out Out
GD12 Out Out Out In
GD12 FP Out Out Out In
GD13 Out Out Out Out
GD13 FP Out Out Out In

Table 8.
Corrective
maintenance events for
homogeneous fleet
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5. Conclusion
The present work presents a novel approach to optimize the routing problem of fractional
fleets. A mixed integer formulation was used for both baseline planning without failure
prognostics and the proposed model, which considers failure prognostics in planning. Exact
solutions were obtained using the Gurobi solver previously mentioned.

Novel considerations presented in this work includemore flexible preventive maintenance
planning with larger windows depending on aircraft activity and the inclusion of failure
prognostics information from data-driven algorithms based on previous works.

Within the context of the problem, this work contributes to the exploration of an important
and promising part of the problem as a whole. The modeling, even with the premises
observed, addresses the supportability of homogeneous and heterogeneous fleets of
executive aircraft in a fractional fleet when scheduling flights taking into account both legacy
standards of preventive maintenance and the use of information from prognostic models.
Naturally, this work paves the way for other modeling by eliminating the premises and
completing the systemic understanding of the aircraft allocation problem.

Since the nature of this problem is inherently dynamic due to the operating conditions of
fractional airlines, an agile planning strategy is essential for efficient operation. For this
reason, the processing time of the model needed to remain within a few hours for adaptation
to practical use. Object that was accomplished seeing as the processing times of all instances
remained under 12 min.

As can be seen from the presented results, the reduction in maintenance costs may be
greater than the added flight hours depending on the flight hour costs and maintenance

Events
1 2 3 4

Failure 1 2 3 1
Real Out Out Out Out
Real FP In Out Out Out
GD2 Out Out Out Out
GD2 FP In Out Out Out
GD3 Out Out Out Out
GD3 FP Out Out Out Out
GD4 Out Out Out Out
GD4 FP Out Out Out In
GD5 Out Out Out Out
GD5 FP Out Out Out Out
GD6 Out Out Out In
GD6 FP Out Out Out In
GD7 Out Out Out Out
GD7 FP Out Out Out Out
GD8 Out Out Out Out
GD8 FP Out Out Out In
GD9 Out Out Out Out
GD9 FP Out Out Out In
GD10 Out Out Out Out
GD10 FP Out Out Out Out
GD11 Out Out Out In
GD11 FP Out Out Out In
GD12 Out Out Out Out
GD12 FP Out Out Out In
GD13 Out Out Out Out
GD13 FP Out Out Out In

Table 9.
Corrective

maintenance events for
heterogeneous fleet
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costs. Even when maintenance opportunities are not found, total costs do not increase
significantly due to the increased flight hours. Given that, business aviation is already a
costly and highly competitive sector, any improvement in operations may have a
significant impact.

The better awareness of possible maintenance events can provide a more efficient
planning opportunity for the maintenance planner, making better use of available man
power. By having more maintenance events happening in-base, rather than out-of-base, the
original planning will suffer less disruptions.

Future works include the inclusion of anticipating corrective maintenance activities to
prevent AOG events at the model and the usage of stochastic modeling and optimization
solutions to properly estimate and minimize operational risks yielded in the form of situation
probabilities and their impacts.
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