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A B S T R A C T

In the aerial pickup and delivery of goods in a distribution network, transport aviation faces risks of load
imbalance due to the urgency required for loading, immediate take-off, and mission accomplishment. Transport
planners deal with trip itineraries, prioritization of items, building up pallets, and balanced loading, but there
are no commercially available systems that can integrally assist in all these requirements. This enables other
risks, such as improper delivery, excessive fuel burn, and possible safety issues due to cargo imbalance, as
well as a longer than necessary turn-around time. This NP-hard problem, named Air Cargo Load Planning with
Routing, Pickup, and Delivery Problem (ACLP+RPDP), is mathematically modelled using standardized pallets
in fixed positions. We developed a strategy to solve this problem, considering historical transport data from
some Brazilian hub networks, and performed several experiments with a commercial solver, five known meta-
heuristics, and a new heuristic designed specifically for this problem. By using a portable computer, our strategy
quickly found practical solutions to a wide range of real problems in much less than operationally acceptable
time.
1. Introduction

The aviation industry adapts during global crises to keep supply
chains moving. Air cargo provided complex expertise and the abil-
ity to access diverse destinations, delivering essential goods such as
medicines, vaccine supplies, testing kits and other necessities with
exceptional speed. This mode of transportation has become a preferred
choice for governments, corporations and global companies in urgent
need of transportation solutions.

Air cargo services are specially designed for organizations that
require customized transportation, handle sensitive goods, or serve
remote locations with limited routes. Air carriers typically use high-
capacity cargo planes for economies of scale. Many cargo airlines have
worldwide networks spread across destinations around the world.

A few years ago, Brandt and Nickel (2019) defined the Air Cargo
Load Planning Problem (ACLPP) as four sub-problems: Aircraft Config-
uration Problem (ACP), Build-up Scheduling Problem (BSP), Air Cargo
Palletization Problem (APP), and Weight and Balance Problem (WBP).
Several aspects were considered: item characteristics to be transported
(dimensions, scores, dangerousness, etc.); types and quantities of unit
load devices (ULDs); when these pallets are assembled; how items are
allocated to pallets; in which positions these pallets are to be placed;
how total cargo weight is balanced; etc.

However, it is crucial to highlight that there are still other important
challenges in air cargo transport that go beyond the definition of
ACLPP, especially with regard to routes, and pickup and delivery at
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each destination. In this context, at least two more important sub-
problems can be considered: simultaneous pickup and delivery at each
node, called the Pickup and Delivery Problem (PDP), and searching for
the best benefit–cost route, which is a special case of the Travelling
Salesman Problem (TSP).

Inefficient air transport plans can lead to unnecessary costs, extra
routes, longer distances, and incorrect destinations. Unbalanced cargo
increases fuel consumption due to altered aircraft pitch angles, increas-
ing the risk of weight- and balance-related accidents. Balancing cargo is
crucial for safe aerial transportation, as an improperly positioned centre
of gravity (CG) can result in dangerous take-off and landing conditions
and stall recovery issues. Despite technological advancements, many
airlines still rely on manual aircraft loading and balancing, which can
lead to flight delays. A rational decision-making process is essential to
avoid creating inefficient or unsafe transport plans, considering high
costs of fuel, maintenance, operation, outsourcing expenses, potential
operational impairments, and safety risks due to unbalanced cargo.
Solving this problem is vital for optimizing strategic scores, saving
time and effort in loading, ensuring safety and balance, correct pickups
and deliveries, and finding the best routes considering fuel use due to
potential cargo imbalance.

The problem addressed in this work is the definition of the route of
an aircraft that loads and unloads hundreds of items in several hubs,
dealing with weight, volume, and balance constraints, and maximizing
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Table 1
Distances between some Brazilian airports (𝑘𝑚).
Source: www.airportdistancecalculator.com

IATAa GRU GIG SSA CNF CWB BSB REC

GRU 0 343 1,439 504 358 866 2,114
GIG 343 0 1,218 371 677 935 1,876
SSA 1,439 1,218 0 938 1,788 1,062 676
CNF 504 371 938 0 851 606 1,613
CWB 358 677 1,788 851 0 1,084 2,462
BSB 866 935 1,062 606 1,084 0 1,658
REC 2,114 1,876 676 1,613 2,462 1,658 0

a International Air Transport Association.

Fig. 1. A route with 7 airports.

the benefit–cost ratio. This challenge has become even more acute
during the COVID-19 pandemic due to the need for urgent medical sup-
plies. Delays in shipping essential items such as respirators to critical
areas highlighted the need for optimized solutions.

This problem is extremely complex, as it deals with different ob-
jectives: defining a route that visits all hubs; maximizing the items
transported along this route, prioritizing the essential ones; making
sure items reach the correct destinations; ensuring aircraft safety con-
straints; and saving fuel so that the flight is sustainable.

We have developed a heuristic process that can be run on a hand-
held computer, quickly providing a good solution to real instances
of this problem. Solutions consist of flight itineraries, pickup and
delivery plans, and the allocation of items onto pallets, ensuring the
load-balancing constraints. Our method also reduces the stresses that
transport planners are subject to, as they have to deal with extensive
information in a short time frame.

To the best of our knowledge, this is the first time that an air cargo
problem involving simultaneously APP, WBP, PDP, and TSP has been
addressed. This new problem is named Air Cargo Load Planning with
Routing, Pickup, and Delivery Problem (ACLP+RPDP). As we will describe
in our mathematical modelling, these four sub-problems appear in an
interconnected way in ACLP+RPDP and therefore cannot be solved
independently.

As a real case study, we consider a crucial network for the Brazilian
Air Force, as can be seen in Table 1 and Fig. 1. Although there are other
airports of interest, these nodes were chosen due to their high demand.
Other Brazilian airports tend to have smaller transport requests, which
are generally met less expensively by cabotage, rail, or road transport.

This article is organized into six more sections. In Section 2, we
make the literature review. In Section 3, we present the context and
requirements of ACLP+RPDP. In Section 4, we describe its mathemat-
ical modelling. In Section 5, we describe the developed algorithms,
whose results are presented in Section 6. Finally, our conclusions are
in Section 7.
2

2. Literature review

The vast majority of operational research applied to air cargo is fo-
cused on challenges related to WBP, that is, the distribution of items on
pallets to ensure load balancing. We can mention: Larsen and Mikkelsen
(1980); Brosh (1981); Ng (1992); Heidelberg et al. (1998); Fok and
Chun (2004); Kaluzny and Shaw (2009); Verstichel et al. (2011); Lim-
bourg et al. (2012); Roesener and Barnes (2016); Chenguang et al.
(2018); Zhao et al. (2021); Macalintal and Ubando (2023).

Other authors have addressed pallet assembly (APP) on aircraft,
possibly also considering load balancing (WBP): Mongeau and Bes
(2003); Chan et al. (2006); Roesener and Hall (2014); Vancroonenburg
et al. (2014); Paquay et al. (2016, 2018); Wong and Ling (2020); Wong
et al. (2021); Zhao et al. (2023).

In all these works, there is a great diversity of scenarios and so-
lutions: some consider items in two dimensions, and others in three
dimensions; some used integer programming, and others developed
specific heuristics. Among the most recent, we can highlight:

• Roesener and Barnes (2016) proposed a heuristic to solve the
Dynamic Airlift Loading Problem (DALP). Given a set of palletized
cargo items that require transport between two nodes in a given
time frame, the objective of this problem is to select an efficient
subset of aircraft, partition the pallets into aircraft loads, and
assign them to allowable positions in those aircraft.

• Paquay et al. (2016) presented a mathematical model to optimize
the loading of heterogeneous 3D boxes on pallets with a truncated
parallelepiped format. Its objective is to maximize the volume
used in containers, considering load balancing constraints, the
presence of fragile items, and the possibility of rotating these
boxes. Paquay et al. (2018) developed some heuristics to solve
this problem.

• Chenguang et al. (2018) modelled the air transport problem as a
2D packing problem and presented a heuristic for its optimization
in several aircraft, considering load balancing to minimize fuel
consumption.

• Wong and Ling (2020) developed a mathematical model and a
tool based on mixed integer programming for optimizing cargo
in aircraft with different pallet configurations. Balance constraints
and the presence of dangerous items were considered. Wong et al.
(2021) integrated this tool into a digital simulation model with
a visualization and validation system based on sensors that alert
about load deviations.

• Zhao et al. (2021) proposed a model for WBP based on Mixed
Integer Programming (MIP). Instead of focusing on the CG devia-
tion, the authors consider the original CG envelope of the aircraft,
with a linearization method for its non-linear constraints.

• Zhao et al. (2023) presented three models that use integer pro-
gramming for air cargo planning and weight balance optimiza-
tion: bi-objective optimization (BOM), combinatorial optimiza-
tion (COM), and enhanced combinatorial optimization (IOM).
Considering a Boeing 777F in several scenarios, the tests revealed
performance problems: BOM is fast, but produces large CG de-
viation; COM offers accurate optimization, but with impractical
runtimes; IOM provides a balanced solution, improving speed
over COM, but requiring high computational demands in some
cases. Although IOM stands out for its effectiveness, all models
face trade-offs between speed, accuracy and computational effi-
ciency. This work alerted us to potential performance issues in
solution methods.

• Macalintal and Ubando (2023) emphasized the proper selection of
an aircraft, balancing factors such as cost, efficiency and limita-
tions. These authors proposed a fuzzy linear programming model,
which allows airlines to consider multiple objectives: maximiz-
ing payload, prioritizing specific items and minimizing opera-
tional costs. However, this approach does not take into account
palletizing constraints.

http://www.airportdistancecalculator.com
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Table 2
Air cargo transport: literature, sub-problems and features.

Work APP WBP PDP TSP 2D 3D Heu Int Lin

Larsen and Mikkelsen (1980) . ★ . . . . ★ . .
Brosh (1981) . ★ . . . . . . ★

Ng (1992) . ★ . . . . . ★ .
Heidelberg et al. (1998) . ★ . . ★ . ★ . .
Mongeau and Bes (2003) ★ ★ . . . . . ★ .
Fok and Chun (2004) . ★ . . . . . ★ .
Chan et al. (2006) ★ . . . . ★ ★ . .
Kaluzny and Shaw (2009) . ★ . . ★ . . ★ .
Verstichel et al. (2011) . ★ . . . . . ★ .
Limbourg et al. (2012) . ★ . . . . . ★ .
Roesener and Hall (2014) ★ ★ . . . ★ . ★ .
Vancroonenburg et al. (2014) ★ ★ . . . . . ★ .
Lurkin and Schyns (2015) . ★ ★ . . . . ★ .
Roesener and Barnes (2016) . ★ . . . . ★ . .
Paquay et al. (2016, 2018) ★ ★ . . . ★ ★ ★ .
Chenguang et al. (2018) . ★ . . ★ . ★ . .
Wong and Ling (2020) ★ ★ . . . . . ★ .
Wong et al. (2021) ★ ★ . . . . . ★ .
Zhao et al. (2021) . ★ . . . . . ★ .
Zhao et al. (2023) ★ ★ . . . . . ★ .
Macalintal and Ubando (2023) . ★ . . . . . ★ .
This article ★ ★ ★ ★ . . ★ ★ .
On the other hand, there are several works that address PDP (Bert-
simas et al., 2019; Golestanian et al., 2023; Meng et al., 2023) or
TSP (Ahmad et al., 2020; Cheikhrouhou & Khoufi, 2021; Debnath
& Hawary, 2021; Xie et al., 2019) for unmanned aerial vehicles or
aircraft, but none of them deal with APP and WBP.

Lurkin and Schyns (2015) is the only work that simultaneously
addresses an air cargo (WBP) and a flight itinerary (PDP) sub-problem.
The authors demonstrated that this problem is NP-hard. Although it is
innovative, strong simplifications were imposed by these authors: in
relation to loading, APP was ignored; regarding routing, it is assumed
that a predefined tour plan is restricted to only two legs. Referring
directly to this work, Brandt and Nickel (2019) comment: However, not
even these sub-problems are acceptably solved for real-world problem sizes,
or models omit some practically relevant constraints.

Table 2 lists the literature on air cargo transport with the sub-
problems involved. We also indicate whether the dimensions of the
items were considered (2D or 3D) and which solution method was used:
heuristic search methods (Heu), integer programming (Int), or linear
programming (Lin).

As can be seen, none of these papers address air cargo palletization
and load balancing with route optimization in a multi-leg transport plan
for a single aircraft. Our work is the first to address a real air transport
problem in which APP, WBP, PDP and TSP arise in an interconnected
way.

3. Context and assumptions

In this section, we describe the context of the problem addressed in
this work as well as the assumptions considered.

3.1. Operational premises

As we are dealing with an extremely complex and diverse problem,
we decided to establish some simplifying characteristics:

• At each node of the tour, the items to be allocated are charac-
terized by weight, volume, scores, and previously known destina-
tions. We leave the consideration of 2D or 3D items to a future
work.

• We considered a unique pallet type: the 463L Master Pallet, a
common size platform for bundling and moving air cargo. It is the
primary air cargo pallet for more than 70 Air Forces and many
air transport companies. This pallet has a capacity of 4500 kg
and 13.7 m3, which may be limited by its position along the
3

Fig. 2. A packed content on 463L pallet inside a Boeing C-17 .
Source: From Wikimedia Commons, the free media repository.

cargo bay. It is equipped for locking into cargo aircraft rail
systems, and includes tie-down rings to secure nets and cargo
loads, which in total weighs 140 kg. For more information, see
www.463LPallet.com.

• All items allocated on a pallet must have the same destination. A
pallet which has not yet reached its destination may receive more
items, although it is known that these operations of removing
restraining nets increase handling time and the risk of improper
delivery. We do not consider oversized cargo in this work, but
only cargo items that fit on these pallets.

• Finally, as we are interested in minimizing fuel costs, we disre-
garded others costs not directly associated with aircraft flight,
such as handling.

Throughout this text, we call packed content (see Fig. 2) a set of
items of the same destination stacked on a pallet and covered with a
restraining net. It is considered a single item, having the same attributes
as its components, whose values are the sum of individual scores,
weights, and volumes. To ensure accuracy in pickup and delivery
operations, packed content must remain on board until its destination.
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Table 3
Aircraft parameters.

𝑃𝑎𝑦𝑙𝑜𝑎𝑑: 75,000 kg 𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑜𝑛𝑔 : 1.170 𝑚 𝑙𝑖𝑚𝑖𝑡𝐶𝐺

𝑙𝑎𝑡 : 0.19 𝑚

𝑝𝑖
𝑝17 𝑝15 𝑝13 𝑝11 𝑝9 𝑝7 𝑝5 𝑝3 𝑝1
𝑝18 𝑝16 𝑝14 𝑝12 𝑝10 𝑝8 𝑝6 𝑝4 𝑝2

𝐷𝑙𝑜𝑛𝑔
𝑖 (𝑚) −17.57 −13.17 −8.77 −4.40 0 4.40 8.77 11.47 14.89

−17.57 −13.17 −8.77 −4.40 0 4.40 8.77 11.47 14.89

𝐷𝑙𝑎𝑡
𝑖 (𝑚) 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32

−1.32 −1.32 −1.32 −1.32 −1.32 −1.32 −1.32 −1.32 −1.32

𝑊𝑖 (𝑘𝑔) 4,500 4,500 4,500 4,500 4,500 4,500 4,500 3,000 3,000
𝑉𝑖 (𝑚3) 14.8 14.8 14.8 14.8 14.8 14.8 14.8 10.0 7.0

Fuel cost 𝑐𝑑 = US$ 4.90∕𝑘𝑚

Fuel consumption rate 𝑐𝑔 = 5%

Maximum weight 𝑊𝑚𝑎𝑥 =
∑

𝑖 𝑊𝑖 = 75, 000 𝑘𝑔
Fig. 3. Aircraft longitudinal cut, where red lines are pallets positions.
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.2. Aircraft parameters and load balancing

We consider real-world scenarios, where Table 3 shows the aircraft
arameters. 𝑝𝑖 are pallets, 1 ≤ 𝑖 ≤ 18, whose weight and volume
imits are 𝑊𝑖 and 𝑉𝑖, respectively. 𝐷𝑙𝑜𝑛𝑔

𝑖 and 𝐷𝑙𝑎𝑡
𝑖 are, respectively, the

ongitudinal and lateral distances of each pallet centroids to the aircraft
G along both axes. These distances will be used in the calculation
f the torque, referring to the items allocated on each pallet. In this
ircraft, as the ramp has an inclination of 25◦, we made the necessary
orrections in 𝐷𝑙𝑜𝑛𝑔

𝑖 , 𝑊𝑖 and 𝑉𝑖 of the corresponding pallets (𝑝1, 𝑝2, 𝑝3,
nd 𝑝4).

This aircraft spends 𝑐𝑑 dollars per kilometre flown and can carry up
o 𝑊𝑚𝑎𝑥 of cargo distributed on the pallets. The fuel penalty 𝑐𝑔 is the
ercentage of cost increase due to the CG deviation on the longitudinal
xis, estimated at 5.0%. It is important to consider that 𝑐𝑔 tends to zero
s the aircraft attitude tends to be level. As the CG deviation varies from
to 𝑙𝑖𝑚𝑖𝑡𝐶𝐺

𝑙𝑜𝑛𝑔 , this fuel penalty varies from 0 to 𝑐𝑔 .
The torque applied to the aircraft must keep its CG in the oper-

tional range, which corresponds to a fixed percentage of the Mean
erodynamic Chord1 which is considered 1.17 m for the aircraft of this
ork (see Fig. 3).

We also make the following assumptions:

• on each pallet, the items are distributed in such a way that their
CG coincides with the centroid of the pallet, because builders are
well-trained to do so;

• the CG of the total load must be at a maximum longitudinal
distance of 𝑙𝑖𝑚𝑖𝑡𝐶𝐺

𝑙𝑜𝑛𝑔 from the CG of the aircraft;
• the CG of the total load must be at a maximum lateral distance

of 𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑎𝑡 from the CG of the aircraft;

• the pallets are distributed in two identical rows (with odd and
even indices, respectively), and the centroid of 𝑝𝑖 is at a distance
𝐷𝑙𝑎𝑡

𝑖 from the centreline of the aircraft;

1 Chord is the distance between the leading and trailing edges of the wing,
easured parallel to the normal airflow over the wing. The average length of

he chord is known as the Mean Aerodynamic Chord (MAC).
4

• when there are items or packed contents in 𝑝𝑖, the common
destination of this load will be assigned to variable 𝑇𝑖.

. The mathematical modelling

In this section, we present the mathematical modelling of
CLP+RPDP in Tables 4, 5, 6, and 7, with their corresponding descrip-

ions.
In Table 4, we describe the problem structure: nodes and their per-

utations, distances and associated costs, pallets characteristics, items
vailable for shipment at each node, and packed contents shipped. The
tem 𝑗 in node 𝑘 has score 𝑠𝑗 , weight 𝑤𝑗 , volume 𝑣𝑗 , and destination
𝑜𝑗 ∈ 𝐿𝑘. Similarly, the packed content 𝑞, that remains on board at
ode 𝑘, has total weight 𝑤𝑞 , total volume 𝑣𝑞 , and destination 𝑡𝑜𝑞 ∈ 𝐿𝑘.
acked contents that were destined to node 𝑘 are unloaded when the
ircraft arrives there; that is, they are not considered in 𝑄𝑘.

Table 5 contains decision variables and the ACLP+RPDP allocation
raph.

The calculus functions of ACLP+RPDP are described in Table 6.

�̃�𝜋 =
𝐾
∑

𝑘=0

𝑚
∑

𝑖=1

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝜋𝑘

𝑖𝑗 × 𝑠𝑗 (1)

𝜋𝑘 =
𝑚
∑

𝑖=1

[

𝐷𝑙𝑜𝑛𝑔
𝑖 ×

(

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝜋𝑘

𝑖𝑗 ×𝑤𝑗 +
𝑚𝜋𝑘
∑

𝑞=1
𝑌 𝜋𝑘
𝑖𝑞 ×𝑤𝑞

)]/

𝑊𝑚𝑎𝑥 × 𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑜𝑛𝑔 ;

𝑘 ∈ {0,… , 𝐾} (2)

𝑐𝜋 =
𝐾
∑

𝑘=0

[

𝑐𝜋𝑘 ,𝜋𝑘+1 × (1 + 𝑐𝑔 × |𝜏𝜋𝑘 |)
]

(3)

𝜋𝑘 = 𝐿𝜋𝑘−1 − {𝜋𝑘}; 𝑘 ∈ {1,… , 𝐾} (4)

𝑡
𝜋𝑘

=
𝑚
∑

𝑖=1

[

𝐷𝑙𝑎𝑡
𝑖 ×

𝑛𝜋𝑘
∑

𝑗=1

(

𝑋𝜋𝑘
𝑖𝑗 ×𝑤𝑗×(𝑖%2)−𝑋

𝜋𝑘
𝑖𝑗 ×𝑤𝑗×(𝑖+1)%2

)]/

𝑊𝑚𝑎𝑥×𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑎𝑡

(5)
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Table 4
Problem structure.

Notation Description

𝐿 = {0, 1,… , 𝐾} Set of 𝐾 + 1 nodes of the tour, where node 0 is the base

𝜋 A permutation between nodes 1, . . . , 𝐾

𝑆𝐾 Set of 𝐾! permutations

𝜋𝑘 The 𝑘th node of tour 𝜋, 1 ≤ 𝑘 ≤ 𝐾

Tour 𝜋 {0, 𝜋1 ,… , 𝜋𝐾 , 0}
For ease of notation, 𝜋0 = 𝜋𝐾+1 = 0

𝐿𝑘 Set of remaining nodes of tour at node 𝑘, 0 ≤ 𝑘 ≤ 𝐾
By definition, 𝐿0 = 𝐿

𝑑(𝑎, 𝑏) Distance from node 𝑎 to node 𝑏, where 0 ≤ 𝑎, 𝑏 ≤ 𝐾
By definition, 𝑑(𝑎, 𝑎) = 0,∀𝑎

𝐶 =
[

𝑐𝑎,𝑏
]

Cost matrix of flights, where 𝑐𝑎,𝑏 = 𝑐𝑑 × 𝑑(𝑎, 𝑏)

𝑀 = {1,… , 𝑚} Set of 𝑚 pallets in specific positions within the aircraft
See Table 3, where 𝑚 = 18

𝑁𝑘 = {1,… , 𝑛𝑘} Set of 𝑛𝑘 items available for loading at node 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑘, 0 ≤ 𝑘 ≤ 𝐾

𝑁 =
⋃

0≤𝑘≤𝐾 𝑁𝑘 Set of items in all nodes along a tour

𝑄𝑘 = {1,… , 𝑚𝑘} Set of 𝑚𝑘 ≤ 𝑚 packed contents at node 𝑘, 1 ≤ 𝑞 ≤ 𝑚𝑘, 0 ≤ 𝑘 ≤ 𝐾
By definition, 𝑚0 = 0 and 𝑄0 = ∅
Table 5
Decision variables and allocation graph.

Notation Description

𝑋𝜋𝑘
𝑖𝑗 and 𝑌 𝜋𝑘

𝑖𝑞 Binary variables, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝜋𝑘 , 1 ≤ 𝑞 ≤ 𝑚𝜋𝑘 and 0 ≤ 𝑘 ≤ 𝐾
𝑋𝜋𝑘

𝑖𝑗 = 1 If item 𝑗 at node 𝜋𝑘 is assigned to pallet 𝑖, and 0 otherwise
𝑌 𝜋𝑘
𝑖𝑞 = 1 If packed content 𝑞 at node 𝜋𝑘 is assigned to pallet 𝑖, and 0 otherwise

𝑇 𝜋𝑘
𝑖 ∈ 𝐿𝜋𝑘 Destination of items and packed contents assigned to pallet 𝑖 at node 𝜋𝑘

𝐺𝜋𝑘 (𝑉𝜋𝑘 , 𝐸𝜋𝑘 ) Allocation graph at node 𝜋𝑘
𝑉𝜋𝑘 = 𝑀 ∪𝑁𝜋𝑘 ∪𝑄𝜋𝑘 Allocation graph vertices at node 𝜋𝑘: pallets, items and packet contents
𝐸𝑁𝜋𝑘

Allocation graph edges at node 𝜋𝑘, corresponding to shipped items
𝐸𝑄𝜋𝑘

Allocation graph edges at node 𝜋𝑘, corresponding to packed contents
𝐸𝜋𝑘 = 𝐸𝑁𝜋𝑘

∪ 𝐸𝑄𝜋𝑘
Allocation graph edges at node 𝜋𝑘

(𝑖, 𝑗) ∈ 𝐸𝑁𝜋𝑘
If 𝑋𝜋𝑘

𝑖𝑗 = 1, where 𝑖 is a pallet and 𝑗 is a item at node 𝜋𝑘
(𝑖, 𝑞) ∈ 𝐸𝑄𝜋𝑘

If 𝑌 𝜋𝑘
𝑖𝑞 = 1, where 𝑖 is a pallet and 𝑞 is a packed content at node 𝜋𝑘
𝜖𝑎𝜋𝑘 =
𝑚
∑

𝑖=1

[

𝐷𝑙𝑎𝑡
𝑖 ×

𝑚𝜋𝑘
∑

𝑞=1

(

𝑌 𝜋𝑘
𝑖𝑞 ×𝑤𝑞×(𝑖%2)−𝑌

𝜋𝑘
𝑖𝑞 ×𝑤𝑞×(𝑖+1)%2

)]/

𝑊𝑚𝑎𝑥×𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑎𝑡

(6)

max
𝜋∈𝑆𝐾

𝑓𝜋 = �̃�𝜋∕𝑐𝜋 (7)

Longitudinal (2) and lateral torques ((5), (6)) are calculated in pro-
portion to the highest torque supported by the aircraft. As there are two
rows of pallets, one on each side of the centreline, we use the operator
modulo (%) to calculate lateral torques. In our experiments, we found
that the magnitude of these lateral torques was always minimal, so we
decided to ignore them in the fuel consumption (3). The objective of
ACLP+RPDP (7) is to find a permutation 𝜋 ∈ 𝑆𝐾 with the corresponding
llocation of items on pallets at each node that maximizes the function
𝜋 = �̃�𝜋∕𝑐𝜋 .

Finally, ACLP+RPDP constraints related to each node 𝜋𝑘 are de-
cribed in Table 7.

𝜏𝜋𝑘 | ≤ 1; 𝑘 ∈ {0,… , 𝐾} (8)

𝜖𝑡𝜋𝑘 + 𝜖𝑎𝜋𝑘 | ≤ 1 (9)

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝜋𝑘

𝑖𝑗 ×𝑤𝑗 +
𝑚𝜋𝑘
∑

𝑞=1
𝑌 𝜋𝑘
𝑖𝑞 ×𝑤𝑞 ≤ 𝑊𝑖; 𝑖 ∈ {1,… , 𝑚} (10)

𝑛𝜋𝑘
∑

𝑋𝜋𝑘
𝑖𝑗 × 𝑣𝑗 +

𝑚𝜋𝑘
∑

𝑌 𝜋𝑘
𝑖𝑞 × 𝑣𝑞 ≤ 𝑉𝑖; 𝑖 ∈ {1,… , 𝑚} (11)
5

𝑗=1 𝑞=1
Table 6
Calculus functions.

Function Description

(1) Total score of transported items throughout tour 𝜋
(2) Longitudinal torque applied by loaded pallets at node 𝜋𝑘
(3) Total cost of fuel on tour 𝜋 (distances and CG longitudinal deviations)
(4) Set of not visited nodes at node 𝜋𝑘
(5) Lateral torque at node 𝜋𝑘 (shipped items)
(6) Lateral torque at node 𝜋𝑘 (packed contents)
(7) Objective function of ACLP+RPDP

𝑚
∑

𝑖=1
𝑋𝜋𝑘

𝑖𝑗 ≤ 1; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (12)

𝑚
∑

𝑖=1
𝑌 𝜋𝑘
𝑖𝑞 = 1; 𝑡𝑜𝑞 ∈ 𝐿𝜋𝑘 ; 𝑞 ∈ {1,… , 𝑚𝜋𝑘} (13)

𝑋𝜋𝑘
𝑖𝑗 <= 𝑋𝜋𝑘

𝑖𝑗 × (𝑇 𝜋𝑘
𝑖 − 𝑡𝑜𝑗 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (14)

𝑋𝜋𝑘
𝑖𝑗 <= 𝑋𝜋𝑘

𝑖𝑗 × (𝑡𝑜𝑗 − 𝑇 𝜋𝑘
𝑖 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (15)

𝑌 𝜋𝑘
𝑖𝑞 <= 𝑌 𝜋𝑘

𝑖𝑞 × (𝑇 𝜋𝑘
𝑖 − 𝑡𝑜𝑞 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑞 ∈ {1,… , 𝑚𝜋𝑘} (16)

𝑌 𝜋𝑘
𝑖𝑞 <= 𝑌 𝜋𝑘

𝑖𝑞 × (𝑡𝑜𝑞 − 𝑇 𝜋𝑘
𝑖 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑞 ∈ {1,… , 𝑚𝜋𝑘} (17)

Once the assumptions and the mathematical modelling are pre-
sented, it is possible to see that ACLP+RPDP is NP-hard. In a similar way
to Lurkin and Schyns (2015), consider the simple case where 𝐾 = 1 (one

leg), 𝑚 = 2 (two pallets around the aircraft CG), 2𝑛 sufficiently light
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Table 7
Constraints.

Constraint Description

((8), (9)) Longitudinal and lateral torques must be within aircraft limits
((10), (11)) Items allocated to each pallet cannot exceed its weight and volume limits
(12) At most, each item is associated with a single pallet
(13) Packed contents that have not yet reached their destination must remain on board
((14), (15)) Items allocated on the same pallet must have the same destinations
((16), (17)) If there is a packed content on the pallet, it must also have the same destination as other items
Fig. 4. Solution process.
items with same scores in node 0, and no items in node 1. Under these
conditions, through polynomial reductions for the Set-Partition Problem,
it is possible to demonstrate that the decision problem associated with
ACLP+RPDP is NP-complete. For more details, see Lurkin and Schyns
(2015, p. 6).

5. Solution process

Throughout our research, we have thoughtfully described
ACLP+RPDP in standard MIP format and found that no solver can han-
dle its practical cases in a feasible time. Thus, as ACLP+RPDP is highly
complex, involving four intractable and interconnected sub-problems,
we decided to focus on real cases, developing quick node-by-node
solutions, not necessarily optimal, but which would allow us to obtain
a complete tour.

In practical cases, we know that a common aircraft has 𝑚 = 18
pallets, flight itineraries have 𝐾 ≤ 6 nodes plus the base, and each
ode has hundreds of items to be shipped. We also know that missions
ith fewer nodes are more frequent than longer ones. Under these

ircumstances, we can adopt some important strategies summarized in
ig. 4:

• We consider that the number of destinations is smaller than the
6

number of pallets (𝐾 < 𝑚), and we avoid the trivial case where
𝐾 = 1. With this premise, we can preset the destinations of
the pallets at each shipping node, reserving a number of pallets
proportional to the volume available for each destination. We
could have used another criterion, but it was observed in the
experiments that the volume is more constrictive in airlift.

• An important parameter is the number 𝑛𝑡𝑜𝑢𝑟𝑠 of tours tested. In
practical cases where 𝐾 ≤ 6, we have the possibility to check
all possible tours (𝑛𝑡𝑜𝑢𝑟𝑠 = 𝐾!). In this situation, as 𝐾 is small,
we can also specially analyse the two optimal solutions of the
corresponding TSP (𝑛𝑡𝑜𝑢𝑟𝑠 = 2). Finally, in cases where 𝐾 > 6, we
will use a heuristic to select 100 tours of low length (𝑛𝑡𝑜𝑢𝑟𝑠 = 100),
and search among them for the one that provides the best value
for the objective function.

• To compare the performance of each strategy, an overall runtime
limit 𝑡𝑚𝑎𝑥 is established and divided by 𝑛𝑡𝑜𝑢𝑟𝑠 tours. In turn, the
runtime limit for each tour will be distributed among its nodes in
proportion to the volume available for boarding.

• At each node of a tour, the packed contents that remain on board
are reallocated on pallets in order to minimize torque on the
aircraft. This calculation is done quickly using a MIP solver. Then,
the destinations of the pallets are previously defined in proportion
to the shipment volume. Finally, considering the runtime limit
of each node, we will use a MIP solver and five well-known

meta-heuristics to find the best allocation of shipping items: Ant
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Table 8
Testing scenarios.

Scenario 𝐾 𝐿

1 2 {0, 1, 2}
2 3 {0, 1, 2, 3}
3 4 {0, 1, 2, 3, 4}
4 5 {0, 1, 2, 3, 4, 5}
5 6 {0, 1, 2, 3, 4, 5, 6}

Colony Optimization (ACO), Noising Method Optimization (NMO),
Tabu Search (TS), Greedy Randomized Adaptive Search Procedure
(GRASP), and Genetic Algorithm (GA). We will also introduce a
very fast heuristic, developed specifically for this problem, called
Shims.

• We will generate benchmarks using the 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 parameter, which
is a value in {1.2, 1.5, 2.0}. It corresponds, at each node 𝑘, to
the ratio between the sum of the volumes of the items and the
load capacity of the pallets (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 =

∑𝑛𝑘
𝑗=1 𝑣𝑗/

∑𝑚
𝑖=1 𝑉𝑖). This

parameter allows us to verify the different behaviour of each
method, according to 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and the quantity of items available
for shipment.

• We will do tests by varying the number 𝐾 of destinations, the set
𝐿 of nodes, and the costs 𝐶. Each group of values tested is called
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, according to Tables 1 and 8, where 1 < 𝐾 ≤ 6. After
finding the method with the best performance in node-by-node
solution, we will test it in solving cases with 𝐾 > 6.

Algorithm 1 is the main program of this solution process, which
arameters are 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠, 𝑡𝑚𝑎𝑥, and 𝑛𝑡𝑜𝑢𝑟𝑠. The input data is
btained from Tables 1, 3 and 8 (lines 2–3).

Algorithm 1 Solving ACLP+RPDP
1: ACLP+RPDP in: 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠, 𝑡𝑚𝑎𝑥, 𝑛𝑡𝑜𝑢𝑟𝑠 out: 𝑎𝑛𝑠𝑤𝑒𝑟
2: Let 𝑀 be the set of pallets (cfr. Table 3)
3: Let 𝐾, 𝐿 and 𝐶 be according to the 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (cfr. Tables 1, 3 and 8)
4: 𝑁 ← 𝐼𝑡𝑒𝑚𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠)
5: for each 𝑚𝑒𝑡ℎ𝑜𝑑 do
6: for 𝑖 ← 1 to 𝑛𝑡𝑜𝑢𝑟𝑠 do
7: 𝑓𝑖 ← 𝑆𝑜𝑙𝑣𝑒𝑇 𝑜𝑢𝑟(𝜋[𝑖], 𝐿,𝑀,𝐶,𝑁,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡𝑚𝑎𝑥∕𝑛𝑡𝑜𝑢𝑟𝑠)
8: end for
9: 𝑎𝑛𝑠𝑤𝑒𝑟[𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠, 𝑚𝑒𝑡ℎ𝑜𝑑] ← max 𝑓𝑖

10: end for

𝑠𝑢𝑟𝑝𝑙𝑢𝑠 is passed to 𝐼𝑡𝑒𝑚𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (line 4), responsible for creating
he items to be shipped, which will be presented in the next section (Al-
orithm 7). 𝑡𝑚𝑎𝑥 is the runtime limit, which will be distributed among
he tours (line 7). 𝑚𝑒𝑡ℎ𝑜𝑑 corresponds to a MIP solver or a heuristic
o the node-by-node solution 𝑆𝑜𝑙𝑣𝑒𝑇 𝑜𝑢𝑟, which will be presented in

Section 5.2. The best results obtained by testing all tours are stored
in 𝑎𝑛𝑠𝑤𝑒𝑟 (line 9), which is the output of this algorithm.

𝜋[] is a vector of tours indexed from 1 to 𝑛𝑡𝑜𝑢𝑟𝑠. When 𝑛𝑡𝑜𝑢𝑟𝑠 = 2,
𝜋[1] and 𝜋[2] are the optimal solutions of the corresponding TSP. When
𝑛𝑡𝑜𝑢𝑟𝑠 = 𝐾!, 𝜋[𝑖] is the 𝑖th permutation of 𝑆𝐾 . Finally, when 𝑛𝑡𝑜𝑢𝑟𝑠 =
100, 𝜋[1],… , 𝜋[100] are the solutions provided by a TSP heuristic.

Next, we will present two subsections: in the first we explain how
𝑆𝑜𝑙𝑣𝑒𝑇 𝑜𝑢𝑟 is executed. In the second we will present the heuristics
developed for node-by-node solutions.

5.1. SolveTour algorithm

As we commented in the previous subsection, we will adopt the
strategy of presetting the destinations of each pallet throughout the
tour. This is feasible in practical cases where 1 < 𝐾 < 𝑚. For this, each
allet 𝑖 also has a field 𝑇 𝑘

𝑖 , 0 ≤ 𝑘 ≤ 𝐾, which stores its next destination
fter being loaded at node 𝑘. For this reason, 𝑇 𝑘

𝑖 ∈ 𝐿𝑘, 1 ≤ 𝑖 ≤ 𝑚,
7

0 ≤ 𝑘 ≤ 𝐾.
𝑆𝑜𝑙𝑣𝑒𝑇 𝑜𝑢𝑟 is described in Algorithm 2, where 𝜋 is a permutation of
the nodes (excluding the base) that defines the order of visits in this
tour, 𝑚𝑒𝑡ℎ𝑜𝑑 corresponds to a MIP solver or a heuristic for solving the
node-by-node problems, and 𝑡𝑚𝑎𝑥 is the runtime limit of this tour.

Algorithm 2 Solving tour 𝜋 with 𝑚𝑒𝑡ℎ𝑜𝑑
1: SolveTour in: 𝜋, 𝐿,𝑀,𝐶,𝑁,𝑚𝑒𝑡ℎ𝑜𝑑, 𝑡𝑚𝑎𝑥 out: 𝑠𝑐𝑜𝑟𝑒∕𝑐𝑜𝑠𝑡
2: 𝜋0 ← 0 ⊳ all tours start and end at the base
3: 𝜋𝐾+1 ← 0
4: 𝑠𝑐𝑜𝑟𝑒 ← 0
5: 𝑐𝑜𝑠𝑡 ← 0
6: for 𝑘 ← 0 to 𝐾 do
7: 𝑡𝜋𝑘 = (

∑𝑛𝑘
𝑗=1 𝑣𝑗∕

∑𝐾
𝑘=0

∑𝑛𝑘
𝑗=1 𝑣𝑗 ) ∗ 𝑡𝑚𝑎𝑥 ⊳ runtime limit proportional to

the shipment volume
8: 𝐿𝜋𝑘 ← 𝐿 − {𝜋0, 𝜋1,… , 𝜋𝑘} ⊳ the set of remaining nodes is updated
9: 𝑇 𝜋𝑘

𝑖 ← −1, 1 ≤ 𝑖 ≤ 𝑚 ⊳ the pallet destination is unset
10: if 𝑘 = 0 then
11: Let 𝐺1(𝑀 ∪𝑁0,∅) ⊳ no packed contents at the base
12: else
13: 𝐸𝑄𝜋𝑘

,𝑀 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑒𝑑(𝑀,𝑄𝜋𝑘 , 𝜋𝑘)
14: Let 𝐺1(𝑀 ∪𝑁𝜋𝑘 ∪𝑄𝜋𝑘 , 𝐸𝑄𝜋𝑘

)
15: end if
16: 𝑀 ← 𝑆𝑒𝑡𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑀,𝜋𝑘)
17: 𝐺2 ← 𝑆𝑜𝑙𝑣𝑒𝑁𝑜𝑑𝑒(𝑚𝑒𝑡ℎ𝑜𝑑, 𝜋𝑘, 𝐺1, 𝑡𝜋𝑘 )
18: 𝑠, 𝜏 ← 𝑆𝑐𝑜𝑟𝑒𝐴𝑛𝑑𝑇 𝑜𝑟𝑞𝑢𝑒(𝜋𝑘, 𝐺2)
19: 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 + 𝑠
20: 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + 𝑐𝜋𝑘 ,𝜋𝑘+1 × (1 + 𝑐𝑔 × |𝜏|)
21: end for

As we mentioned in the previous section, all tours start and end
at the base 0 (lines 2–3). After initializing the score and cost values
(lines 4–5), there is a loop for the 𝐾 + 1 flights (lines 6–21). Initially,
the runtime limit 𝑡𝜋𝑘 for each node is calculated (line 7), the set 𝐿𝜋𝑘
of remaining nodes is updated (line 8), and the pallet destinations are
unset (line 9).

When the aircraft is at the base, the initial graph 𝐺1 is empty, and
there are no packed contents (line 11). Otherwise, 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑒𝑑 (line
13) returns the set of packed contents that have not yet reached their
destination and remain on board, rearranging them on the pallets to
minimize CG deviation. This allocation is stored in graph 𝐺1 (line 14).

𝑆𝑒𝑡𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (line 16) presets the destination of each pal-
let based on the volume demands of the current node without changing
the pallet’s destination with packed contents.

Finally, 𝑆𝑜𝑙𝑣𝑒𝑁𝑜𝑑𝑒 includes the edges corresponding to the items
shipped at the current node, returning the graph 𝐺2 (line 16). The score
and the CG deviation of 𝐺2 are calculated (line 18) and accumulated
(lines 19–20), allowing the final result of this tour as output.

𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑒𝑑, described in Algorithm 3, finds the best packed-
pallet allocation, in terms of CG deviation, for the packed contents that
remain on board.

Algorithm 3 Updating the packed contents that remain boarded at
node 𝜋𝑘
1: UpdatePacked in: 𝑀,𝑄𝜋𝑘 , 𝜋𝑘 out: 𝐸𝑄𝜋𝑘

,𝑀
2: 𝐸𝑄𝜋𝑘

← 𝑀𝑖𝑛𝐶𝐺𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐸𝑄𝜋𝑘
)

3: for 𝑖 ← 1 to 𝑚 do
4: for 𝑞 ← 1 to 𝑚𝜋𝑘 do
5: 𝑇 𝜋𝑘

𝑖 ← −1
6: if (𝑖, 𝑞) ∈ 𝐸𝑄𝜋𝑘

then
7: 𝑇 𝜋𝑘

𝑖 ← 𝑡𝑜𝑞 ⊳ reassign pallet destinations
8: end if
9: end for

10: end for

𝑀𝑖𝑛𝐶𝐺𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (line 2) relocates the packed contents on the pal-
lets, minimizing torque and ensuring that they all remain on board, one
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packed content on each pallet. It is run through a MIP solver with the
objective function (18) and the constraints (19) and (20). As there are
few variables, 𝐸𝑄𝜋𝑘

is obtained in less than 30 milliseconds. Finally, the
destination of each pallet with packed content is updated (lines 3–10).

min 𝑓 = |

|

|

𝑚
∑

𝑖=1

𝑚𝜋𝑘
∑

𝑞=1
𝑌 𝑘
𝑖𝑞 ×𝑤𝑞 ×𝐷𝑙𝑜𝑛𝑔

𝑖
|

|

|

(18)

𝑚
∑

𝑖=1
𝑌 𝑘
𝑖𝑞 = 1; 𝑞 ∈ {1,… , 𝑚𝜋𝑘} (19)

𝑚𝜋𝑘
∑

𝑞=1
𝑌 𝑘
𝑖𝑞 ≤ 1; 𝑖 ∈ {1,… , 𝑚} (20)

𝑆𝑒𝑡𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠, which sets the pallets destination not yet
defined, is described in Algorithm 4.

Algorithm 4 Setting pallets destination based on the items to be
embarked at node 𝜋𝑘
1: SetPalletsDestinations in: 𝑀,𝜋𝑘 out: 𝑀
2: 𝑣𝑜𝑙𝑥 ← 0, 𝑥 ∈ 𝐿𝜋𝑘
3: 𝑚𝑎𝑥 ← 0 ⊳ destination with maximum volume demand
4: 𝑡𝑜𝑡𝑎𝑙 ← 0
5: for 𝑗 ← 1 to 𝑛𝜋𝑘 do
6: if 𝑡𝑜𝑗 ∈ 𝐿𝜋𝑘 then
7: 𝑣𝑜𝑙𝑡𝑜𝑗 ← 𝑣𝑜𝑙𝑡𝑜𝑗 + 𝑣𝑗
8: 𝑡𝑜𝑡𝑎𝑙 ← 𝑡𝑜𝑡𝑎𝑙 + 𝑣𝑗
9: if 𝑣𝑜𝑙𝑡𝑜𝑗 > 𝑣𝑜𝑙𝑚𝑎𝑥 then

10: 𝑚𝑎𝑥 ← 𝑡𝑜𝑗
11: end if
12: end if
13: end for
14: for 𝑥 ∈ 𝐿𝜋𝑘 do
15: if 𝑣𝑜𝑙𝑥 ≠ 0 then
16: 𝑛𝑒𝑒𝑑𝑒𝑑 ← max{1, ⌊(𝑚 − 𝑚𝜋𝑘 ) × 𝑣𝑜𝑙𝑥∕𝑡𝑜𝑡𝑎𝑙⌋}
17: 𝑛𝑝 ← 0
18: for 𝑖 ← 1 to 𝑚 do
19: if (𝑛𝑝 < 𝑛𝑒𝑒𝑑𝑒𝑑) and (𝑇 𝜋𝑘

𝑖 = −1) then
20: 𝑇 𝜋𝑘

𝑖 ← 𝑥
21: 𝑛𝑝 ← 𝑛𝑝 + 1 ⊳ number of necessary pallets to node 𝑥
22: end if
23: end for
24: end if
25: end for
26: for 𝑖 ← 1 to 𝑚 do
27: if 𝑇 𝜋𝑘

𝑖 ← −1 then
28: 𝑇 𝜋𝑘

𝑖 ← 𝑚𝑎𝑥 ⊳ any remaining pallet is assigned to the maximum
demand destination

29: end if
30: end for

𝑣𝑜𝑙 stores the demand volume of items destined for the non-visited
odes (line 2). The destination of empty pallets is defined proportion-
lly to the volume of items to be embarked (lines 14–25). 𝑚𝑎𝑥 is the
estination with maximum volume demand (line 10), and 𝑛𝑒𝑒𝑑𝑒𝑑 is the
umber of necessary pallets to node 𝑥 (line 16). The destination with
he maximum volume defines any remaining pallets (lines 26–30).

𝑆𝑐𝑜𝑟𝑒𝐴𝑛𝑑𝑇 𝑜𝑟𝑞𝑢𝑒, described in Algorithm 5, evaluates the alloca-
ion graph 𝐺 generated by 𝑆𝑜𝑙𝑣𝑒𝑁𝑜𝑑𝑒 at node 𝜋𝑘 and returns the
orresponding cargo score and aircraft torque.

Algorithm 5 consists of a loop that goes through all the pallets (lines
–18), accumulating the scores (lines 8 and 14) and the torques (lines
and 15) of the shipped items, allowing the final calculation of the

ircraft torque (line 19).

.2. Node-by-node solutions

In this subsection, we present two implementations of 𝑆𝑜𝑙𝑣𝑒𝑁𝑜𝑑𝑒
lgorithm: with a MIP solver and with heuristics.
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Algorithm 5 Cargo score and aircraft torque
1: ScoreAndTorque in: 𝜋𝑘, 𝐺 out: 𝑠, 𝜏
2: Let 𝐺(𝑉𝜋𝑘 , 𝐸𝑄𝜋𝑘

∪ 𝐸𝑁𝜋𝑘
)

3: 𝑠 ← 0
4: 𝜏𝑖 ← 0, 1 ≤ 𝑖 ≤ 𝑚
5: for 𝑖 ← 1 to 𝑚 do
6: for 𝑗 ← 1 to 𝑛𝜋𝑘 do
7: if 𝑋𝜋𝑘

𝑖𝑗 = 1 then
8: 𝑠 ← 𝑠 + 𝑠𝑗 ⊳ accumulates cargo score
9: 𝜏𝑖 ← 𝜏𝑖 +𝑤𝑗 ×𝐷𝑙𝑜𝑛𝑔

𝑖 ⊳ accumulates aircraft torque
10: end if
11: end for
12: for 𝑞 ← 1 to 𝑚𝜋𝑘 do
13: if 𝑌 𝜋𝑘

𝑖𝑞 = 1 then
14: 𝑠 ← 𝑠 + 𝑠𝑞 ⊳ accumulates cargo score
15: 𝜏𝑖 ← 𝜏𝑖 +𝑤𝑞 ×𝐷𝑙𝑜𝑛𝑔

𝑖 ⊳ accumulates aircraft torque
16: end if
17: end for
18: end for
19: 𝜏 ←

∑𝑚
𝑖=1 𝜏𝑖∕(𝑊𝑚𝑎𝑥 × 𝑙𝑖𝑚𝑖𝑡𝐶𝐺

𝑙𝑜𝑛𝑔) ⊳ final calculation of the aircraft torque

5.2.1. Node-by-node solutions with a MIP solver
Our strategy adopted in 𝑆𝑜𝑙𝑣𝑒𝑇 𝑜𝑢𝑟 defines the values of some

variables: the set of nodes to be visited is updated, the packed contents
that remain on board are reallocated to minimize the CG deviation,
and the pallet’s destinations are determined according to the volume
of items available for shipment.

In this way, the mathematical model for 𝑆𝑜𝑙𝑣𝑒𝑁𝑜𝑑𝑒
𝑀𝐼𝑃 , 𝜋𝑘, 𝐺, 𝑡𝑚𝑎𝑥) becomes simpler, which finds an allocation of avail-
ble items at node 𝜋𝑘 using previously defined values of 𝐿𝜋𝑘 , 𝑇 𝜋𝑘

𝑖 , and
𝜋𝑘
𝑞 . Thus, we use a MIP solver with a runtime limit 𝑡𝑚𝑎𝑥 at node 𝜋𝑘

to maximize the objective function (21) with the calculus Eqs. (22) to
(24), subject to the constraints (25) to (31). The binary variables 𝑋𝑖𝑗
and 𝑌𝑖𝑞 define the sets of edges 𝐸𝑁𝜋𝑘

and 𝐸𝑄𝜋𝑘
, respectively, included

in graph 𝐺.

max 𝑓 = �̃�∕𝑐 (21)

�̃� =
𝑚
∑

𝑖=1

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝑖𝑗 × 𝑠𝑗 (22)

𝜏𝜋𝑘 =
𝑚
∑

𝑖=1

[

𝐷𝑙𝑜𝑛𝑔
𝑖 × (

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝑖𝑗 ×𝑤𝑗 +

𝑚𝜋𝑘
∑

𝑞=1
𝑌𝑖𝑞 ×𝑤𝑞)

]/

𝑊𝑚𝑎𝑥 × 𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑜𝑛𝑔 (23)

𝑐 = 𝑐𝜋𝑘 ,𝜋𝑘+1 × (1 + 𝑐𝑔 × |𝜏𝜋𝑘 |) (24)

|𝜏𝜋𝑘 | ≤ 1 (25)

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝑖𝑗 ×𝑤𝑗 +

𝑚𝜋𝑘
∑

𝑞=1
𝑌𝑖𝑞 ×𝑤𝑞 ≤ 𝑊𝑖; 𝑖 ∈ {1,… , 𝑚} (26)

𝑛𝜋𝑘
∑

𝑗=1
𝑋𝑖𝑗 × 𝑣𝑗 +

𝑚𝜋𝑘
∑

𝑞=1
𝑌𝑖𝑞 × 𝑣𝑞 ≤ 𝑉𝑖; 𝑖 ∈ {1,… , 𝑚} (27)

𝑚
∑

𝑖=1
𝑋𝑖𝑗 ≤ 1; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (28)

𝑋𝑖𝑗 = 0; 𝑡𝑜𝑗 ∉ 𝐿𝜋𝑘 ; 𝑖 ∈ {1,… , 𝑚}; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (29)

𝑋𝑖𝑗 ≤ 𝑋𝑖𝑗 × (𝑇 𝜋𝑘
𝑖 − 𝑡𝑜𝑗 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (30)

𝑋𝑖𝑗 ≤ 𝑋𝑖𝑗 × (𝑡𝑜𝑗 − 𝑇 𝜋𝑘
𝑖 + 1); 𝑖 ∈ {1,… , 𝑚}; 𝑗 ∈ {1,… , 𝑛𝜋𝑘} (31)

The constraints (30) and (31) are equivalent to 𝑋𝑖𝑗 = 1 if 𝑡𝑜𝑗 = 𝑇 𝜋𝑘
𝑖 ,

and 𝑋 = 0 otherwise .
𝑖𝑗
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Fig. 5. Shims of various thicknesses.
Source: www.mscdirect.com/product
/details/70475967.

Fig. 6. 𝑛𝜋𝑘 possible edges 𝑒𝑖𝑗 sorted by 𝜃𝑖𝑗 in non-ascending order.

5.2.2. Node-by-node solutions with heuristics
One of the main objectives of this work was to find a quick heuris-

tic that offers a good-quality solution for the node-by-node problem.
Taking this into account, we design algorithms based on five known
meta-heuristics: Ant Colony Optimization (ACO) (Dorigo, 1992; Dorigo
et al., 1996), Noising Method Optimization (NMO) (Charon & Hudry,
1993, 2001; Zhan et al., 2020), Tabu Search (TS) (Glover, 1986), Greedy
Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1989),
and Genetic Algorithm (GA) (Holland, 1992). We considered several
ideas from the literature (Alonso et al., 2019; Fidanova, 2006; Niar
& Freville, 1997; Peerlinck & Sheppard, 2022; Zhan et al., 2020), and
we were careful to use the same data structures and procedures in all
implementations to enforce fair results comparison.

However, the heuristic that presented better solutions was none of
the previous ones. In this subsection, we will present a new heuristic for
the node-by-node problem, called Shims. Like in mechanics, shims are
collections of spacers to fill gaps, which may be composed of parts with
different thicknesses (see Fig. 5). This strategy is based on a practical
observation: usually, subsets of smaller and lighter items are saved for
later adjustments to the remaining available space.

The selection of edges for 𝐸𝑁𝜋𝑘
uses the edge attractiveness 𝜃𝑖𝑗 (32),

which can be understood as the tendency to allocate item 𝑗 to pallet 𝑖
at node 𝜋𝑘. It is directly proportional to the score, and inversely to the
volume and the torque of each item.

𝜃𝑖𝑗 =
𝑠𝑗
𝑣𝑗

×
(

1 −
𝑤𝑗 × |𝐷𝑙𝑜𝑛𝑔

𝑖 |

max𝑤𝑗 × max |𝐷𝑙𝑜𝑛𝑔
𝑖 |

)

; 𝑖 ∈ {1,… , 𝑚}, 𝑗 ∈ {1,… , 𝑛𝜋𝑘}

(32)

Considering only the items that can be shipped at node 𝜋𝑘, Fig. 6
represents 𝑛𝜋𝑘 possible edges 𝑒𝑖𝑗 of pallet 𝑖 sorted by 𝜃𝑖𝑗 in non-
ascending order. Initially, Shims builds a greedy solution for pal-
let 𝑖 selecting edges up to index 𝜂1 (greedy phase). Then, with the
edges between 𝜂1 and 𝜂2, it elaborates different possible complements
(composition phase), including later the best ones in the same pallet
(selection phase). Shims is depicted in Algorithm 6.
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Algorithm 6 Shims heuristic at node 𝜋𝑘
1: SolveNode in: Shims, 𝜋𝑘, 𝐺, 𝑡𝑚𝑎𝑥, 𝑙𝑒𝑣𝑒𝑙1, 𝑙𝑒𝑣𝑒𝑙2 out: 𝐺(𝑀 ∪ 𝑁𝜋𝑘 ∪

𝑄𝜋𝑘 , 𝐸𝑄𝜋𝑘
∪ 𝐸𝑁𝜋𝑘

)
2: 𝑇𝑏𝑒𝑔𝑖𝑛 ← current system time
3: Let 𝐺(𝑀 ∪𝑁𝜋𝑘 ∪𝑄𝜋𝑘 , 𝐸𝑄𝜋𝑘

)

4: Sort 𝑀 by |𝐷𝑙𝑜𝑛𝑔
𝑖 | in non-descending order

5: 𝐸𝑁𝜋𝑘
← ∅

6: 𝜏𝑚𝑎𝑥 ← 𝑊𝑚𝑎𝑥 × 𝑙𝑖𝑚𝑖𝑡𝐶𝐺
𝑙𝑜𝑛𝑔

7: for 𝑖 ← 1 to 𝑚 do
8: 𝜏𝜋𝑘 ←

∑

(𝑖,𝑞)∈𝐸𝑄𝜋𝑘
𝑤𝑞 ×𝐷𝑙𝑜𝑛𝑔

𝑖

9: 𝑣𝑜𝑙𝑖 ←
∑

(𝑖,𝑞)∈𝐸𝑄𝜋𝑘
𝑣𝑞

10: Let 𝐸 be an array of 𝑛𝜋𝑘 possibles edges of pallet 𝑖 sorted by 𝜃𝑖𝑗 in
non-ascending order

11: 𝜂1 ← 1
12: repeat
13: 𝑒𝑖𝑗 ← 𝐸𝜂1
14: if (𝐸𝑁𝜋𝑘

∪ {𝑒𝑖𝑗} is feasible) and (𝑣𝑜𝑙𝑖 ≤ 𝑉𝑖 × 𝑙𝑒𝑣𝑒𝑙1) and (|𝜏𝜋𝑘 +𝑤𝑗 ×

𝐷𝑙𝑜𝑛𝑔
𝑖 | ≤ 𝑊𝑚𝑎𝑥 × 𝑙𝑖𝑚𝑖𝑡𝐶𝐺

𝑙𝑜𝑛𝑔) then
15: 𝐸𝑁𝜋𝑘

← 𝐸𝑁𝜋𝑘
∪ {𝑒𝑖𝑗}

16: 𝑣𝑜𝑙𝑖 ← 𝑣𝑜𝑙𝑖 + 𝑣𝑗
17: 𝜏𝜋𝑘 ← 𝜏𝜋𝑘 +𝑤𝑗 ×𝐷𝑙𝑜𝑛𝑔

𝑖
18: 𝜂1 ← 𝜂1 + 1
19: end if
20: until (𝑣𝑜𝑙𝑖 > 𝑉𝑖 × 𝑙𝑒𝑣𝑒𝑙1) or (𝜂1 > 𝑛𝜋𝑘 )
21: 𝑠𝑙𝑎𝑐𝑘𝑖 ← 𝑉𝑖 − 𝑣𝑜𝑙𝑖
22: 𝜂2 ← 𝜂1
23: while (𝜂2 ≤ 𝑛𝜋𝑘 ) and (𝑣𝑜𝑙𝑖 < 𝑉𝑖 × 𝑙𝑒𝑣𝑒𝑙2) do
24: 𝑒𝑖𝑗 ← 𝐸𝜂2
25: 𝑣𝑜𝑙𝑖 ← 𝑣𝑜𝑙𝑖 + 𝑣𝑗
26: 𝜂2 ← 𝜂2 + 1
27: end while
28: 𝑣𝑜𝑙 ← 0; 𝑏 ← 1; 𝑠ℎ𝑖𝑚𝑠𝑏 ← ∅; 𝑆𝑒𝑡 ← {𝑠ℎ𝑖𝑚𝑠𝑏}
29: for 𝑥 ← 𝜂1 to 𝜂2 do
30: if 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝑏𝑒𝑔𝑖𝑛 > 𝑡𝑚𝑎𝑥 then
31: break
32: end if
33: 𝑁𝑒𝑤𝑆ℎ𝑖𝑚𝑠 ← True
34: 𝑒𝑖𝑗 ← 𝐸𝑥
35: for 𝑠ℎ𝑖𝑚𝑠 ∈ 𝑆𝑒𝑡 do
36: if (𝑒𝑖𝑗 ∉ (𝐸𝑁𝜋𝑘

∪ 𝑠ℎ𝑖𝑚𝑠)) and (𝑒𝑖𝑗 is feasible) and ((𝑣𝑗 + 𝑣𝑜𝑙) ≤
𝑠𝑙𝑎𝑐𝑘𝑖) then

37: 𝑠ℎ𝑖𝑚𝑠 ← 𝑠ℎ𝑖𝑚𝑠 ∪ {𝑒𝑖𝑗}
38: 𝑣𝑜𝑙 ← 𝑣𝑜𝑙 + 𝑣𝑗
39: 𝑁𝑒𝑤𝑆ℎ𝑖𝑚𝑠 ← False
40: break
41: end if
42: end for
43: if 𝑁𝑒𝑤𝑆ℎ𝑖𝑚𝑠 then
44: 𝑣𝑜𝑙 ← 0; 𝑏 ← 𝑏 + 1; 𝑠ℎ𝑖𝑚𝑠𝑏 ← {𝑒𝑖𝑗}
45: 𝑆𝑒𝑡 ← 𝑆𝑒𝑡 ∪ {𝑠ℎ𝑖𝑚𝑠𝑏}
46: end if
47: end for
48: 𝑠ℎ𝑤 ← 𝑠ℎ𝑖𝑚𝑠, where 𝑠ℎ𝑖𝑚𝑠 ∈ 𝑆𝑒𝑡 and ∑

𝑒𝑖𝑗∈𝑠ℎ𝑖𝑚𝑠
𝑤𝑗 is maximum

49: 𝑠ℎ𝑣 ← 𝑠ℎ𝑖𝑚𝑠, where 𝑠ℎ𝑖𝑚𝑠 ∈ 𝑆𝑒𝑡 and ∑

𝑒𝑖𝑗∈𝑠ℎ𝑖𝑚𝑠
𝑣𝑗 is maximum

50: 𝑠ℎ𝑏𝑒𝑠𝑡 ← 𝑠ℎ𝑖𝑚𝑠, where 𝑠ℎ𝑖𝑚𝑠 ∈ {𝑠ℎ𝑤, 𝑠ℎ𝑣} and ∑

𝑒𝑖𝑗∈𝑠ℎ𝑖𝑚𝑠
𝑠𝑗 is maximum

51: 𝐸𝑁𝜋𝑘
← 𝐸𝑁𝜋𝑘

∪ 𝑠ℎ𝑏𝑒𝑠𝑡
52: end for

𝑡𝑚𝑎𝑥 is the runtime limit for Shims, and 𝑙𝑒𝑣𝑒𝑙1 and 𝑙𝑒𝑣𝑒𝑙2 are volume
thresholds for indices 𝜂1 and 𝜂2, respectively. Initially, 𝑄𝜋𝑘 (line 3)
corresponds to the packed contents that remain on board. It is impor-
tant to remember that 𝐸𝑄𝜋𝑘

and 𝑀 were modified by the procedure
𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑐𝑘𝑒𝑑(𝑀,𝑄𝜋𝑘 , 𝜋𝑘) and the procedure 𝑆𝑒𝑡𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠
(𝑀,𝜋𝑘). Then, the pallets are considered in non-descending order of
|𝐷𝑙𝑜𝑛𝑔

𝑖 |.
For each pallet 𝑖, its 𝑛𝜋𝑘 possible edges 𝑒𝑖𝑗 are considered in non-

increasing order of 𝜃𝑖𝑗 :

• In the greedy phase (lines 4–20), a partial solution for each pallet
𝑖 is constructed by adding edges following 𝜃 order. Indices
𝑖𝑗

http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967
http://www.mscdirect.com/product/details/70475967


Expert Systems With Applications 249 (2024) 123711A.C.P. Mesquita and C.A.A. Sanches

m

1
i

𝜂1 and 𝜂2 refer to the accumulated volumes 𝑉𝑖 × 𝑙𝑒𝑣𝑒𝑙1 and
𝑉𝑖 × 𝑙𝑒𝑣𝑒𝑙2, respectively, which were defined empirically by the
irace tool (Lopez-Ibanez et al., 2016). We will explain this in
Section 6.1.

• In the composition phase (lines 21–27), a set of shims named 𝑆𝑒𝑡
is created for each pallet 𝑖, where each shim is formed by a set of
edges in the range [𝜂1, 𝜂2], whose total volume is limited by 𝑠𝑙𝑎𝑐𝑘𝑖.
In this phase, the heuristic that provided the best results, both in
terms of time and quality, is based on First-Fit Decreasing, which is
an approximation algorithm for the Bin Packing Problem (Johnson
& Garey, 1985). Basically, shims are created by accumulating the
following edges, taking 𝑠𝑙𝑎𝑐𝑘𝑖 as a limit.

• In the selection phase (lines 28–51), the best shim in 𝑆𝑒𝑡 is chosen.
Initially, two shims are found: 𝑠ℎ𝑤 with larger weight and 𝑠ℎ𝑣
with larger volume. Between the two, the one with the highest
score will be chosen, and its edges will be inserted into 𝐸𝑁𝜋𝑘

.

5.3. Time complexity using Shims

We finish this section with the analysis of the time complexity of
our ACLP+RPDP solution, considering the use of the Shims heuristic.

In this process, when 𝐾 > 6 (that is, in unusual cases of air
transportation), we need a GA-based TSP heuristic to generate 100
tours of size 𝐾. This heuristic can be chosen and calibrated to be fast
enough: specifically, in the tests we will present in the next section,
it took just 33𝑠 with 𝐾 = 15. For this reason, we will not perform its
complexity analysis. We will also not consider the time spent by the
irace tool, in defining parameters for Shims, as it is only executed once
in the calibration of our method.

Let 𝑛 = max 𝑛𝑘. Without loss of generality, we assume that 𝑚 =
(𝑛) and therefore max𝑚𝑘 = (𝑛). This way, to read the input data,
Algorithm 1 requires time (𝑚+𝐾2+𝐾.𝑛+𝑚.max𝑚𝑘) = (𝑚.𝑛), because
𝐾 < 𝑚.

Since 𝑛𝑡𝑜𝑢𝑟𝑠 ≤ 6!, it is enough to calculate the complexity of
Algorithm 2:

• Its initial variables are (𝐾.𝑛).
• Algorithm 3 minimizes the CG deviation related to packed con-

tents using a MIP solver. We are unable to analyse its time
complexity, but we found that it is very fast in all cases considered
in our work, where 𝑚 = 18: it spent a maximum of 30 ms. The final
loop of Algorithm 3 takes time (𝑚.𝑛).

• Algorithm 4 takes (𝑛 +𝐾 + 𝑚) time.
• Shims, described in Algorithm 6, spends (𝑚. log𝑚) in ordering

the pallets and then performs a loop with 𝑚 iterations. Each of
these iterations spends (𝑛. log 𝑛) on ordering the edges by the
value of 𝜃𝑖𝑗 , and (𝑛) on the others statements. So its total time
is (𝑚.𝑛. log 𝑛).

• Algorithm 5 takes (𝑚.𝑛) time.

Therefore, since there are 𝐾 iterations in Algorithm 2, we can con-
clude that its total time is (𝐾.𝑚.𝑛. log 𝑛), which is the time complexity
of ACLP+RPDP solution.

6. Implementation and results

This section is composed of two parts: the generation of the test
instances and the results obtained in our implementation.

6.1. Instances generation

As we are dealing with a new problem that until now had not been
modelled in the literature, we have to create our own benchmarks. For
this, we based it on the characteristics of real airlifts carried out by the
Brazilian Air Force, as described below.

In the delivery of supplies carried out in Brazil from 2008 to 2010,
10

23% of the items weighed between 10 kg and 20 kg, 22% from 21 kg
Table 9
Items weight distribution.
𝐼𝑡𝑒𝑚 𝑃 𝐿𝑜𝑤 (𝑘𝑔) 𝐻𝑖𝑔ℎ (𝑘𝑔)

1 0.23 10 20
2 0.22 21 40
3 0.24 41 80
4 0.23 81 200
5 0.08 201 340

to 40 kg, 24% from 41 kg to 80 kg, 23% from 81 kg to 200 kg, and 8%
between 201 kg and 340 kg. These five groups of items are described in
Table 9, where 𝑃 represents the group probability. On the other hand,
the average density of these items is approximately 246 kg/m3.

In the generation of test instances, we use two types of random
selections:

• 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(𝑖1, 𝑖2): randomly selects a integer number in [𝑖1, 𝑖2],
where 𝑖1 and 𝑖2 are integer numbers;

• 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒(𝑠𝑒𝑡) biased through 𝜙: selects an element from 𝑠𝑒𝑡, where
the probability of each element is proportional to the value of a
given function 𝜙 defined on 𝑠𝑒𝑡.

The procedure 𝐼𝑡𝑒𝑚𝑠𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, which generates 𝑁 (all items to be
oved among the nodes), is described in Algorithm 7.

Algorithm 7 Generating items
1: ItemsGeneration in: 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 out: 𝑁
2: Let 𝐿 be the set of nodes and 𝑀 the set of pallets
3: 𝑙𝑖𝑚𝑖𝑡 ← 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 ×

∑𝑚
𝑖=1 𝑉𝑖

4: for 𝑘 ← 0 to 𝐾 do
5: 𝑁𝑘 ← ∅
6: 𝑗 ← 0
7: 𝑣𝑜𝑙 ← 0
8: while 𝑣𝑜𝑙 < 𝑙𝑖𝑚𝑖𝑡 do
9: 𝑗 ← 𝑗 + 1

10: Let 𝑡𝑘𝑗 be the item 𝑗 at the node 𝑘
11: repeat
12: 𝑡𝑜𝑗 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(0, 𝐾)
13: until 𝑡𝑜𝑗 ≠ 𝑘
14: 𝑥 = 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒(𝑖𝑡𝑒𝑚) biased through 𝑃 ⊳ From Table 9
15: 𝑤𝑗 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(𝑙𝑜𝑤(𝑥), ℎ𝑖𝑔ℎ(𝑥))
16: 𝑠𝑗 ← ⌊100 × (1 − log10(𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(1, 9)))⌉
17: 𝑣𝑗 ← 𝑤𝑗∕𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(148, 344)
18: 𝑣𝑜𝑙 ← 𝑣𝑜𝑙 + 𝑣𝑗
19: 𝑁𝑘 ← 𝑁𝑘 ∪ {𝑡𝑘𝑗 }
20: end while
21: end for
22: 𝑁 ←

⋃

0≤𝑘≤𝐾 𝑁𝑘

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 defines 𝐿 and 𝑀 (line 2), and the argument 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 sets a
limit on the total volume of items at each node (line 3). To avoid simply
loading all items, we use 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 ∈ {1.2, 1.5, 2.0} . This also represents
more instances for tests in each scenario.

For each generated 𝑡𝑘𝑗 item, its destination is randomly selected (line
2), its weight has a distribution according to Table 9 (lines 14–15),
ts score varies 100 (highest) and 5 (lowest) according to a logarithmic

scale (line 16), and its volume is randomly defined from the density,
where we allow a variation of 40% around the average density of
246 kg/m3 (line 17).

To determine the parameters 𝑙𝑒𝑣𝑒𝑙1 and 𝑙𝑒𝑣𝑒𝑙2 used by Shims, we
previously carried out some experiments with the irace tool (Lopez-
Ibanez et al., 2016), the results of which are presented in Table 10.
In these tests, of every 7 instances generated for each value of 𝑠𝑢𝑟𝑝𝑙𝑢𝑠,
4 were used as the training set and 3 as the testing set. We provided
the ranges [0.8, 1.0] and [1.0, 2.0] for 𝑙𝑒𝑣𝑒𝑙1 and 𝑙𝑒𝑣𝑒𝑙2, respectively.
In each experiment, there was a maximum of 3000 runs so that irace
would have enough data for its statistical tests. For more details, see

cran.r-project.org/web/packages/irace/.
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Table 10
irace results.
𝑆𝑢𝑟𝑝𝑙𝑢𝑠 𝐿𝑒𝑣𝑒𝑙1 𝐿𝑒𝑣𝑒𝑙2 Runtime (min)

1.2 0.8621 1.0539 47
1.5 0.9199 1.1399 59
2.0 0.9617 1.5706 63

Table 11
Overall results.

Method Best scenarios Worst scenarios Worst runtimes (min)

NMO 4 5 60
ACO 2, 3 4, 5 25, 61
GRASP 1 4, 5 28, 55
TS – 5 44
GA – 1, 2, 3, 4, 5 Did not solve

Gurobi 1, 2, 3, 4 5 Did not solve
Shims 1, 2, 3, 4, 5 – 3.26

6.2. Obtained solutions: quality and runtimes

In the tests performed, we used a 64-bit, 16 GB, 3.6 GHz, eight-
core processor with Linux Ubuntu 22.04.1 LTS 64-bit as the operational
system and Python 3.10.4 as the programming language. We also used
the well-known solver Gurobi (www.gurobi.com), version 9.5.2.

We will first present the results obtained in practical cases, when
1 < 𝐾 ≤ 6. Next, we will show how Shims remains robust when 𝐾 > 6.

6.2.1. Results when 1 < 𝐾 ≤ 6
We ran Algorithm 1 considering the 5 scenarios from Table 8, 3 val-

ues for 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 from {1.2, 1.5, 2.0}, 4 values for 𝑡𝑚𝑎𝑥 from {240 s, 1200 s,
2400 s, 3600 s}, and 7 different methods for the node-by-node solu-
tion: Gurobi (Section 5.2.1), ACO, NMO, TS, GRASP, GA, and Shims
(Algorithm 6).

For Gurobi to be able to solve the largest possible number of tests
without memory overflow, we set its parameter MIPgap to 1%. This
shortens its runtime, in addition to ensuring that its objective function
𝑓 is at most 1% of the optimal solution. For more details, see https:
//www.support.gurobi.com For each 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 𝑡𝑚𝑎𝑥 tested,
7 different instances were generated.

Table 11 succinctly shows the overall performance of the methods
for the node-by-node solution. Only Shims found a solution for all
scenarios, as well as being the fastest.

Table 12 shows a particular case (𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.2, 𝑛𝑡𝑜𝑢𝑟𝑠 = 𝐾!, and
𝑚𝑎𝑥 = 3600 s) in which the methods can find solutions for all scenarios.
s can be seen, Shims always obtained the best value for the objective

unction, in addition to being the fastest.
All methods used (ACO, NMO, TS, GRASP, and GA) generate a large

umber of solutions that require further evaluation, resulting in longer
untimes. On the other hand, Shims is a constructive heuristic that
ontinually builds a feasible solution, which makes it much faster. Shims

uses the First-Fit Decreasing algorithm and the irace tool, which follow
a greedy process in the search for solution quality.

It is important to highlight that the speed of obtaining a balanced
allocation at a node is essential for the ACLP+RDPD solution. Only in
11

this way will it be possible to make the various comparisons between S
different routes, allowing the obtaining of an efficient flight itinerary
with pickup and delivery.

Fig. 7 shows the pallet occupancy rate (weight and volume) at
each tour node found by Shims, with 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 1, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.2 and
𝑚𝑎𝑥 = 3600 s. As can be seen, the number of pallets with a high volume
ate tends to grow throughout the tour.

For these reasons, we will present only the results obtained by
hims, with the average of the objective function 𝑓 and the runtime of
urobi and Shims. To facilitate the comparison between both, we added
last column in the tables where two values are indicated:

• Normalized: value between 0 and 1, which corresponds to the
ratio between the sum of 𝑓 values obtained by the method in
all scenarios and the sum of the best values obtained by both
methods in all scenarios. The higher the value of Normalized,
the closer the method approached the best solutions found.

• Speed-up: ratio of the sums of the runtimes of all scenarios and
the sum of the method runtimes in all scenarios. The method with
the highest Speed-up is the fastest.

We also indicate the adopted strategies: dedicating all the process-
ng time to the 𝑛𝑡𝑜𝑢𝑟𝑠 = 2 shortest tours or distributing it among all
𝑡𝑜𝑢𝑟𝑠 = 𝐾! tours. The results obtained with 𝑡𝑚𝑎𝑥 = 3600 s, which is the
ighest tested runtime limit, are in Tables 13–15, with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 values
f 1.2, 1.5 and 2.0, respectively. We indicate with an x the cases where
urobi did not find a feasible solution within this runtime limit or had

o be aborted due to high random-access memory (RAM) usage.
From these data, we can draw some conclusions:

• The strategy of testing all 𝐾! tours often provide a better-quality
solution, even with less time on each node. This shows that the
four sub-problems are interconnected in such a way that it is not
enough to solve them separately.

• Gurobi fails in some cases when 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 5 and the strategy is
to check all 𝐾! tours. This occurs because the runtime limit per
node is smaller and there tend to be more packed contents on the
aircraft, reducing the space for allocating items and making the
solution difficult.

• When Gurobi finishes, it finds the best solution, but the one ob-
tained by Shims reaches at least 98.96% of that value. Considering
only the strategy of testing all 𝐾! tours, this value increases to
99.58%.

• Shims always finds a solution, being 7 to 40 times faster.
• All runtimes are much lower than the limit because the solution

on many nodes can be fast. Anyway, in all the tests performed,
the maximum time spent by Shims did not reach 4 min. On the
other hand, when 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 5 and 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.5, Gurobi spent
almost 40 min.

Table 16 shows the results obtained with the strategy of testing the
! tours in all scenarios with different 𝑡𝑚𝑎𝑥. We can observe more cases
here Gurobi fails, even in smaller scenarios. When Gurobi finishes,
hims finds a solution of similar quality (99% or better). In all cases,
hims finds a solution in less than 4 min.

The actual RAM consumption of Gurobi was over 8.5 GB, and all of

hims ’s executions consumed at most 1.5 GB of RAM.
Table 12
Solutions with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.2, 𝑛𝑡𝑜𝑢𝑟𝑠 = 𝐾!, and 𝑡𝑚𝑎𝑥 = 3600 𝑠.
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 NMO ACO GRASP TS GA Shims

𝑓 Time (s) 𝑓 Time (s) 𝑓 Time (s) 𝑓 Time (s) 𝑓 Time (s) 𝑓 Time (s)

1 8.38 4 8.40 17 8.40 12 8.39 4 5.03 154 8.49 1
2 11.21 17 11.29 56 11.24 47 11.12 18 5.66 544 12.10 2
3 13.12 87 13.25 278 13.13 258 13.03 90 5.63 2,614 13.30 8
4 13.32 520 13.73 1,516 13.31 1,690 13.22 586 5.45 2,924 14.49 10
5 52.20 3,582 52.36 3,602 52.16 3,292 51.21 2,627 18.74 3,192 53.61 36

https://www.support.gurobi.com
https://www.support.gurobi.com
https://www.support.gurobi.com
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Fig. 7. Occupation rates obtained by Shims with 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 1, 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.2 and 𝑡𝑚𝑎𝑥 = 3600 s.
Table 13
Solutions with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.2 and 𝑡𝑚𝑎𝑥 = 3600 𝑠.
𝑛𝑡𝑜𝑢𝑟𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 2 3 4 5 Normalized

speed-up

2
Gurobi 𝑓 8.53 11.79 13.14 13.52 x 0.9998

Time (s) 29 28 25 27 x 1.0

Shims 𝑓 8.54 11.78 13.06 13.51 48.47 0.9980
Time (s) 1 1 1 1 2 22.7

𝐾!
Gurobi 𝑓 8.60 12.20 13.66 15.00 x 0.9998

Time (s) 30 35 123 314 x 1.0

Shims 𝑓 8.49 12.10 13.30 14.49 53.61 0.9958
Time (s) 1 2 8 10 36 7.49
Table 14
Solutions with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1.5 and 𝑡𝑚𝑎𝑥 = 3600𝑠.
𝑛𝑡𝑜𝑢𝑟𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 2 3 4 5 Normalized

Speed-up

2
Gurobi 𝑓 11.83 16.73 18.07 18.83 16.86 0.9996

Time (s) 55 64 39 40 88 1.0

Shims 𝑓 11.85 16.72 18.05 18.80 16.87 0.9993
Time (s) 1 1 2 2 2 35.8

𝐾!
Gurobi 𝑓 11.83 16.93 18.40 20.95 17.60 0.9999

Time (s) 63 59 195 472 2,258 1.0

Shims 𝑓 11.85 16.91 18.36 20.93 17.50 0.9976
Time (s) 1 2 5 15 100 23.8
6.2.2. Results when 𝐾 > 6

These last results do not correspond to practical cases of air trans-
ort, as tours where 𝐾 > 6 very rarely occur. However, it is possible to

see that the Shims maintains robust behaviour as the number of nodes
grows, that is, it could be adapted to similar contexts (ships and trucks,
for example), where there may be more nodes.

Considering real data from the 15 main Brazilian airports, we
12

implemented a GA-based TSP heuristic that returned 100 tours in
approximately 33 s. We implemented this heuristic with DEAP (Dis-
tributed Evolutionary Algorithms in Python), an evolutionary com-
putation framework. For more details, see Fortin et al. (2012) and
github.com/deap/deap.

Fig. 8 shows the runtime curve of Shims as the number 𝐾 of nodes
increases. Runtime is the average obtained from 7 instances generated
with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 2.0 and 𝑡𝑚𝑎𝑥 = 1200 s for each value of 𝐾. In Fig. 9, we
indicate one of the tours found by this TSP heuristic when 𝐾 = 15.
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Table 15
Solutions with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 2.0 and 𝑡𝑚𝑎𝑥 = 3600 s.
𝑛𝑡𝑜𝑢𝑟𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 2 3 4 5 Normalized

speed-up

2
Gurobi 𝑓 17.70 24.20 26.39 27.17 24.20 0.9995

Time (s) 168 98 79 70 72 1.0

Shims 𝑓 17.74 24.22 26.32 27.07 23.13 0.9896
Time (s) 1 2 2 3 4 40.6

𝐾!
Gurobi 𝑓 17.90 25.44 26.51 29.13 x 0.9994

Time (s) 178 143 378 862 x 1.0

Shims 𝑓 17.94 25.45 26.44 28.84 26.22 0.9970
Time (s) 1 3 10 31 196 34.7
Table 16
Solutions testing all 𝐾! tours with different runtime limits.

𝑠𝑢𝑟𝑝𝑙𝑢𝑠 1.2 1.5 2.0

𝑀𝑒𝑡ℎ𝑜𝑑 𝑡𝑚𝑎𝑥 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Gurobi

240 s 𝑓 8.60 12.20 13.67 x x 11.77 16.38 18.10 x x 17.89 25.42 x x x
Time (s) 31 35 124 x x 52 59 200 x x 188 145 x x x

1200 s 𝑓 8.61 12.20 13.31 10.00 x 11.77 17.02 18.25 20.64 x 17.75 25.24 26.49 27.97 x
Time (s) 28 37 129 320 x 46 61 190 304 x 161 139 384 579 x

2400 s 𝑓 8.60 12.21 13.67 15.00 13.41 11.77 16.37 18.03 20.95 x 17.89 25.44 26.15 29.13 x
Time (s) 26 38 134 310 1,520 46 60 199 461 x 164 140 383 786 x

3600 s 𝑓 8.60 12.20 13.66 15.00 x 11.76 16.37 18.01 20.95 17.60 17.90 25.44 26.15 29.13 x
Time (s) 30 35 123 314 x 64 58 195 472 2,258 178 143 378 862 x

Shims 240 s 𝑓 8.49 12.10 13.30 14.49 53.61 11.78 16.29 17.99 20.93 17.50 17.94 25.45 26.14 28.84 26.22
Time (s) 1 2 8 10 36 1 2 5 15 100 1 3 10 31 196
c
f
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m
t
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g
t

A
s
S
m
f

Fig. 8. Shims performance with 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 2.0 and 𝑡𝑚𝑎𝑥 = 1200 s.

. Conclusions

In this work, we modelled and solved a real air transport prob-
em named Air Cargo Load Planning with Routing, Pickup, and Deliv-
ry Problem (ACLP+RPDP). For the first time in the literature, a NP-
ard problem that involves simultaneously pallet assembly, load bal-
ncing, route planning, and pickup and delivery is addressed, where
he cost-effectiveness of transport is maximized. Currently, there is no
ommercial software available for this problem.

We adopted some simplifications that are not critical, but that
llowed for an unprecedented solution to this problem considering
everal nodes. In practical cases, there are hundreds of items to be
hipped at each node, and the number of nodes, excluding the base,
s smaller than the number of pallets. Considering a real aircraft, we
ave developed node-by-node solutions such that the complete process
an be executed quickly on a handheld computer, offering good results
nd reducing stress for the transport planners.
13

t

Fig. 9. A tour where 𝐾 = 15.

As validation, we carried out tests in several scenarios. In the real
ases, the solution process can establish, in less than four minutes, a
light itinerary for a single aircraft with a good distribution of load
n pallets at each node of the tour, enforcing the weight balance,
aximizing the total score, and minimizing fuel consumption along

he planned route, which is beneficial to reduce carbon emissions. This
utput is an essential part of airlift: it guarantees flight safety, makes
round operations more efficient, and makes sure that each item gets
o its right destination.

Our main contributions were the mathematical modelling of
CLP+RPDP, involving four well-known and interconnected NP-hard
ub-problems, a complete process to solve it, and a new heuristic named
hims that offers fast node solutions with good quality. Without a quick
ethod for balanced allocation at each node, it would be unfeasible to

ind a flight itinerary and, consequently, a pickup and delivery plan on
his tour.
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We also show that this solution process remains valid in other
contexts where there may be a greater number of nodes. This way, our
method is not exclusive to aircraft and airports: it can be adapted to
ships and ports, trucks and warehouses, or wagons and railways. In
these situations, it would be necessary to make some changes in the
model: for example, modify the load balancing constraints and consider
parts of the available space as pallets.

As this is ongoing research, we thought about some possible future
improvements: consider more than one aircraft, implement parallel
algorithms in some steps of the solution to improve computational
efficiency, and model 3-D items.
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