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Featured Application: The proposed prescriptive maintenance framework supports the mainte-
nance teams in the Industry 4.0 ecosystem, enhancing the availability of diverse machinery and
team capabilities.

Abstract: Manufacturing and assembling aircraft require hundreds of different machines for various
process applications. The machines have different complexity and often different ages; however, they
have to ensure a higher precision than other industrial fields. Recent technology advancement in
maintenance approaches offers a wide range of opportunities to provide performance and availability.
The paper discusses how the maintenance technologies applicable to the various machines need
to be appropriately supported by a production environment, called “ecosystem”, that allows their
integration within the process and their synergy with the operators. (1) A background analysis of
the aircraft production environment is offered. (2) A possible framework for designing a proper
ecosystem 4.0 for integrating maintenance activities with design solutions and data gathering is
provided. (3) A case study based on the assembly line of specific aircraft is adopted for testing
the validity of the framework. (4) Finally, a discussion highlights the critical points of the research,
underlying future work.

Keywords: ecosystem 4.0; maintenance 4.0; aviation; aircraft manufacturing; assembly line

1. Introduction

Large commercial, executive, or defence aircraft assemblers have manufacturing
lines composed of many machines for various purposes. Nevertheless, human labour is
still responsible for the vast majority of the assembly and finishing phases of different
parts. This is partly due to the large size of aeronautical parts that require large and
heavy machines, which has hampered the development of automation in the sector. More
demanding than the automotive industry, the aeronautical sector also has higher precision
and quality requirements, further increasing technological development for manufacturing
through autonomous machines [1]. Bogue [2] mentioned that robots’ use is far more limited
in the aerospace industry than in the automotive sector. The most significant development
of automation in the sector consists of drilling and riveting panels for wings and fuselage
and transporting large parts for the assembly of aircraft wings and fuselage sections [1,3,4].
Robotic cells have been used in this sector, with high availability, precision, and quality,
also becoming a point of attention for producing the input for several other workshops on
the assembly line [3].

The challenge in an aircraft assembly company’s production line maintenance is to have
different types of machinery at different maintenance paradigms. There are machines built
decades ago that only have a maintenance plan (scheduled maintenance interventions) based
on obsolete information. In contrast, newer machines already have predictive maintenance
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or preventive maintenance approaches in a Total Productive Maintenance (TPM) policy.
Adjusting the corrective, preventive, and predictive maintenance plans to be carried out by a
small group of maintainers becomes a significant challenge as the machines degrade and the
degradation model is not defined. This happens due to a lack of manufacturer’s information,
ageing of the machinery, the absence of sensors, or a combination of them [4]. However, due
to the appearance of corrective maintenance or a change in the demand for the manufacture
of new aircraft, there may be a change in parameters and a need to redesign several machines’
maintenance plans in the line. Such a situation generates rework and, possibly, a not optimal
result for the production line’s production and maintenance. The loss of expected productivity
and sub-optimal maintenance costs may reduce the company’s revenue. A flexible plan is
built each year of operation so that there is a statistical base that will support maintenance for
decision-makers.

Big Data analytics and Digital Twins came to support this approach, but only mon-
itored machines or processes may take advantage of the technique. The Digital Twins’
concept is the most comprehensive in terms of using technologies aimed at Industry 4.0.
The work of Qi [5] declares that the main difficulty is to establish the right technologies
and tools to use the approach appropriately. The result of He [6] brings the evidence of
acquiring situation awareness from digitized processes, captured data, and performed
prognosis throughout the virtualized system, providing timely information to the various
actors and decision-makers. Gao [7] pursues the challenge to provide an effective and
efficient way to enhance productivity using Big Data Analytics, keeping the economy
within the established boundaries and promoting the value-added product. In all these
works, the maintenance costs are relevant and should be considered in the total cost.

This research paper seeks to identify the Industry 4.0 technologies’ current opportuni-
ties to generate an “ecosystem” that facilitates information acquisition on the processes
being executed and the existing assets to obtain the best possible results. It is intended to
build a framework to support situational awareness to decision-makers and to suggest the
optimal use of the current maintenance workforce being allocated, favouring a smooth and
more extensive adoption of the prescriptive maintenance approach. Prescriptive mainte-
nance uses the same knowledge in terms of data from predictive maintenance, integrating
it with advice related to the maintenance window of opportunity and the tasks the workers
need to perform. It allows generating better overall performance optimizing the allocations
of resources, such as work floor surface and assets, for each task at the right moment.
Therefore, the output of a prescriptive maintenance process must be a dynamic schedule
of preventive maintenance according to the maintenance teams’ adversities, spare parts,
equipment availability, and tools in the identified maintenance window of opportunity, and
the correct maintenance procedure manual. The primary purpose is to keep the machinery’s
high availability during the expected time of its utilization, given the production demand
at the manufacture and assembly lines. The work in Choubey [8] brought the evidence that
prescriptive maintenance is still in its infancy and lacks real-world implementations and
lessons learned to empower its usage on a large scale. Marques [9] established the Smart
Prescriptive Maintenance Framework (SPMF) utilized in the present work to provide a
path to prescriptive maintenance implementation in any industry using the ecosystem
4.0 capabilities.

Considering that the window of opportunity’s prediction is the foremost approach to
optimise the entire maintenance process, the present study identified possible techniques
to establish this purpose. Several methods are being utilised in literature to predict the
window of opportunity based on production planning and product quality. The work in
Shamsaei [10] exposed how limiting the problem size could be depending on the solver
and algorithmic approach being used. The authors managed to increase the problems’ size
using a hybrid capacity planning approach based on non-cyclic maintenance (NCMP) and
cyclic maintenance (CMP), showing that the solution could have exponential possibili-
ties. The authors utilized a Mixed-Integer Programming (MIP) solver to such problems
and could find the solution in a reasonable time, but they did not work with multiple
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machines. Matyas [11] proposed a procedural approach using multivariate data analysis
and simulation tools to identify data correlations and real-time failures and implement it in
a real-world scenario in the automotive manufacturing industry. The authors considered a
scenario of production planning with multiple machines’ maintenance planning but did not
consider a dynamic production environment. Koops [12] presented an analytical process
for prescriptive maintenance based on data analysis and Monte Carlo simulation; however,
no discussion was mentioned about ecosystem 4.0 as an enabler. Kerin [13] discussed in
depth the enablers and main paradigms of the Industry 4.0 remanufacturing and proposed
framework but did not present simulations or applications in the prescriptive maintenance
field. Similarly, Navas [14] presented a smart maintenance framework, discussed the
technological enablers, and asserted that maintenance 4.0 is an uncontestable trend but did
not present a simulation or case study.

To capture the dynamicity of the environment is necessary to apply the Industrial
Internet of Things (IIoT) and understand the patterns in the captured data as already
declared in Gao’s work [7]. IIoT comprehends sensors that provide data to support Big
Data Analytics and the pattern recognition effort that uses machine learning algorithms as
presented in the work of Doce [15]. Diez’s work [16] exposed the main contributions to
state-of-the-art descriptive, predictive and prescriptive maintenance using optimization
and machine learning algorithms. The authors proposed trends and perspectives about
prescriptive maintenance, including metrics variability and conflicting objectives such
as productivity and reliability that may affect the design of efficient solvers for problem
resolution. Based on the considerations about the ecosystem 4.0 opportunity to contribute to
the prescriptive maintenance approach and the trends exposed, the present work provides
a novel framework that integrates different techniques, combining MIP and a real world
dynamic production environment case study as the main contribution to the prescriptive
maintenance implementation.

2. Materials and Methods

The Smart Prescriptive Maintenance Framework (SPMF), introduced in Marques [9],
was developed and tested on a study case to support the introduction of prescriptive main-
tenance. The present work assembly line presents complex production systems (robots and
other equipment), a specific operating environment that provides production requirements
or production levels, and a well-defined maintenance capability constituted by mainte-
nance labour, tooling, tribal knowledge and infrastructure suitable for the implementation
of the SPMF.

The SPMF is built on three domains of interest captured through data fusion method-
ologies and integrated by artificial intelligence approaches. The SPMF’s domains of inter-
est are:

1. the system’s Reliability, Availability, Maintainability and Safety (RAMS) factors;
2. the operating environment in which the system is being deployed;
3. the organization’s maintenance capabilities [9].

As restrictions treated in de Mello [3], time is considered during the maintenance
schedule that cannot be postponed or anticipated. Cost is also considered, although
indirectly, in the restriction that imposes a limit on the available maintenance man-hours
and by the objective function, which aims to minimize the maintenance man-hours spent,
as presented in Section 3.2.

According to Marques [9], although the SPMF was conceived to implement the pre-
scriptive maintenance on a commercial jet fleet, it can be generalized and used to support
any complex system. Each domain was selected because it contains essential system infor-
mation and performance requirements that feed the prescriptive maintenance framework
algorithm, so the best group of maintenance actions is defined.

Figure 1 presents the framework which unifies ecosystem 4.0 and the SPMF applied
to the aviation assembly line. The bottom right box shows the idealized assembly line
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constituted by robots, tools, equipment, workers, and logistics activities. The whole
production process and resources are scheduled by the product demand [17].
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Figure 1. SPMF for integrating different Ecosystem 4.0 in the assembly line.

The framework was built considering the three SPMF’s domains previously men-
tioned:

1. RAMS information is represented by the technical publications, manuals, specs,
maintenance plan, and the data gathered from the condition monitoring;

2. The operating environment and requirements are essentially defined by the produc-
tion demand, robots, tools, and workforce; and

3. The organization’s maintenance capabilities are described by the maintenance re-
sources such as tools, labour available, and maintenance tribal knowledge.

Wired or wireless networks and sensors continuously collect temperature, position,
humidity, vibration sensors, Radio Frequency Identification (RFID) and internal processes
such as built-in-test capabilities, performance, health status and equipment usage. The
acquired data sets are successively stored in a centralized big data warehouse. The infor-
mation is standardized and structured for the simulation and evaluation stage to prescribe
and schedule maintenance tasks in real time and keep the assembly line functioning at the
required performance through data fusion.

The simulation process aims to develop the best maintenance course of action to
maximize the Overall Equipment Effectiveness (OEE) and minimize maintenance man-
hours while ensuring production level.

In the simulation and evaluation stage, all the knowledge-base, parameters, system
characteristics, and requirements are considered to generate prescriptive maintenance
recommendations.

The information considered by the simulation algorithm within the SPMF’s framework
is listed below:

• Maintenance manual and maintenance team’s “tribal” knowledge;
• Equipment condition monitoring to support Prognostics and Health Management,

including Remaining Useful Life (RUL) evaluation;
• Available resources such as maintenance labour and tools;
• The maintenance plan, including tasks and their interval; and
• Production demand.
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The methodology adopted for the simulation is the Mixed-Integer Linear Program-
ming or Mixed-Integer Programming (MIP), well known in the Operations Research field.
The choice of MIP is related to its intrinsic characteristic to optimize a complex organiza-
tion’s operational efficiency while considering demands, capacity and other business rules
as a constraint of the system. Shamsaei [10] mentioned that MIP is simpler, faster and more
effective than other methodologies such as heuristics and meta-heuristics for industrial
systems problems, like the proposed case study. This approach is also strengthened by
Schrotenboer [18], who demonstrated that MIP could be successfully used to optimize
maintenance equipment under operational uncertainties.

In the top-right box, identified with the letter “a”, in Figure 1, a real-time updated
prescriptive maintenance plan is presented to the maintenance engineer who takes the final
decision about how to maintain the assembly line. This decision support system is often
constituted by a “smart” maintenance scheduling that provides, also in real time and in
Gantt form, a dynamic maintenance plan for each piece of equipment.

The plan is then executed on the assembly line by the maintenance team. In a feed-
back loop form, the OEE parameters and maintenance labour performance are measured.
The system assesses its performance, continuously improves the algorithm, and adjusts
parameters according to product demand and assembly resources in a non-stop, continuous
improvement cycle.

3. Case Study

The case study’s goal is to determine whether the adoption of SPMF improves OEE
and decreases the maintenance man-hour of a commercial aircraft wing assembly line. The
methodology to build the case study included semi-structured interviews with maintenance
engineers who have been responsible for the maintenance of more than 90 machines of an
aerospace manufacturer assembly line for 20 years. The field exploration helped to define
parameters such as the monthly wing demand in a production rump up scenario, the
number of production cells, maintenance team size, the meantime to repair (MTTR), and
the maintenance strategy usually adopted. It is essential to mention that some parameters
could not be collected or were not available from the field exploration, thus were identified
through a literature review. The limitation arising from adopting this literature’s parameters
is that the data are different from the field’s information. However, the magnitude of the
possible incongruency does not invalidate the study since the product (aircraft wing) and
the assembly line type (organized in levels) are the same observed in both scenarios: in the
field and the literature. Table 1 presents the parameters collected through field exploration,
the ones identified from the literature review, and both.

Table 1. Parameters’ sources

Parameter or Assembly Line Characteristics Field Exploration Literature

Monthly production x

Assembly level [19]

Number of robots x

Riveting per robot, per wing [19]

Mean Time Between Failures x [20–23]

Production rate [19]

Robot Maintenance Class x [24]

Robot Maintenance Strategy x

Maintenance Tasks Types and Intervals x [21]

Mean Time to Repair x

Team size and expertise x
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3.1. Assembly Line Description

The assembly line mentioned in de Mello [3] is considered and shown in Figure 2,
capable of assembling a three-piece wing box as an example. This assembly operation is
divided into four steps, as demonstrated in Figure 2:

1. First assembly level: parts like skins, stringers, stiffeners, and doublers are joined to
form upper and lower panels, as well as spar, ribs, and bulkhead subassemblies;

2. Second assembly level: these subassemblies are joined to form left, right and centre
rib/spar grid structures;

3. Third assembly level: upper and lower panel subassemblies are joined with the
rib/spar to form left, right and centre boxes;

4. Fourth assembly level: three wing boxes are joined to form the final wing.
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As shown in Table A1 of Appendix A, 57% of all fasteners and rivets needed to
assemble the wing are used at the first level, making it easier to automatize. Joining skin
panels to the grid in the third level requires 34% of all rivets and fasteners, and even though
automatization here is more challenging than the first level, it is still worth it. Although
the final level only requires 3% of the fasteners, the time needed to install these larger
fasteners without the aid of robots would be a magnitude higher than the time required
to install fasteners in first level assembly; thus, automatization is highly recommended
in this level, and it was adopted for the case study analysed in this paper. The second
level only requires 6% of the total rivets/fasteners. Finally, manual installation is easy and
acceptable in this step, thus turning the use of robots uneconomical. As a result, the second
level’s assembly tasks were assumed to be manually executed in the model proposed. The
line was modelled according to the parameters listed in Table A2 of Appendix A. The
parameters were acquired from the semi-structured interviews during the field exploration
and confirmed through the literature review, as previously presented in Table 1.

3.2. Mathematical Model

Given that the preventive maintenance of an assembly line is an unavoidable part of
the operation, robots must be stopped for regular maintenance activities. In this regard,
time spent in maintenance is unproductive, reducing the availability of KPI’s in the assem-
bly process. The aim of the proposed model is therefore to reduce this unproductive time
brought on by preventive maintenance. Khatab [25] presents a similar objective function,
however, focusing on the cost incurred by the labour hours. Since this paper focuses on the
overall efficiency of the assembly line, the repair teams are considered to have a fixed cost
to be on standby for maintenance, thus this cost is not relevant at his point. The assembly
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line described in Section 3.1 was mathematically modelled according to the parameters,
variables and formulation presented below:

Parameters

I: set of maintenance activities;
J: set of maintenance teams;
R: set of robots;
K: set of robot types;
T: total number of maintenance activities required;
W: total working hours of maintenance teams in a period.
Robot_Vector: vector that lists the robot types and their position in the assembly line
Experience_Matrix: defines the J teams’ experience and knowledge in maintaining each

of the K robot types. In alignment with the observations in the assembly line during the
field exploration, it was adopted as a system of five experience levels as suggested by the
International Labour Organisation [26] as explained below:

• Level 1—shallow experience: performs 25% slower than the MTTR for a team to
execute the maintenance tasks;

• Level 2—low experience: performs 10% slower than MTTR for a team to execute the
maintenance tasks;

• Level 3—average experience: it takes a time equal to the MTTR to execute the mainte-
nance task;

• Level 4—high experience: performs 10% faster than the MTTR to execute the mainte-
nance task; and

• Level 5—very high experience: performs 25% faster than the MTTR to execute the
maintenance task.

Experience_Factor: vector that lists the experience levels used to calculate how long it
takes for the team to perform a maintenance task.

Averageir: average time to perform maintenance task i for robot r.
tijr: the time required by team j to perform maintenance activity i on robot r.
Decision variables
zijr: decision variable that assumes the value one (1) if team j performs maintenance

activity i on robot r.
C: number of cancelled maintenance activities
Objective Function

min ∑
i∈I

∑
j∈J

∑
r∈R

tijrzijr (1)

Restrictions
∑
j∈J

zijr ≤ 1 ∀ i ∈ I, ∀ r ∈ R (2)

∑
r∈R

tijrzijr ≤W ∀ i ∈ I, ∀ j ∈ J (3)

C + ∑
i∈I

∑
j∈J

∑
r∈R

zijr = T (4)

zijr ∈ {0, 1} ∀ i ∈ I, ∀ j ∈ J, ∀ r ∈ R (5)

The objective function, Equation (1), aims to minimize the robot downtimes by reduc-
ing maintenance man-hours over the 15 years of operation considered. Here, tijr is defined
in Equation (6):

tijr = Averageir × Experience_Factor
(

ExperinceMatrixj,RobotVectorr

)
(6)

Equation (2) is a restriction that imposes that maintenance activity must only be done
once by one team. Equation (3) determines that the maintenance man-hours cannot exceed
the established maximum work hours of a team in a certain period, which, in this case, is
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16 man-hours/day in seven days, meaning there are a total of 112 man-hours each seven
days. Variable C in Equation (4) represents the number of tasks that could not be performed
because of unavailable labour. Equation (5) defines variable zijr as binary, equal to 1 if
maintenance i, for robot r, is performed in time t and equal to 0 otherwise.

A more global parameter is used to better compare the different cases presented in
this work. This parameter is the OEE that takes into account availability, performance, and
quality. For all effects in this work, the performance and quality are considered constant;
thus, the availability can be more efficiently compared.

Equations (7) and (8) define the measured OEE and availability for the tested cases:

OEE = Availability × Per f ormance × Quality (7)

Availability =
AvailableHours− Downtime

AvailableHours
(8)

Due to the scenario’s structure tested in the following cases, the amount of mainte-
nance activity hours in some periods is purposefully superior to the available labour hours.
Thus, each case presents several cancelled maintenance activities in total planning. These
cancelled activities are considered as downtime for the robots. Except for case 2, all cases
were solved using the mixed-integer linear programming model presented previously. The
system used to run the simulations was a laptop computer with 8 GB of RAM and operating
system macOS Big Sur version 11.1 [27] running the open-source GUROBI solver [28] in
MATLAB version R2020b [29].

Introduction to the different scenarios

Within the assembly line described in Section 3, four maintenance scenarios were
modelled to evaluate how the SPMF can improve the OEE and the equipment availability
over an assembly line life-cycle of 15 years. This time period was selected to include
over-haul and heavy maintenance, that, according to field exploration, literature review,
and historical data, happen every 12 to 15 years for the considered equipment. These
four different scenarios are relevant because they model, under some limitations, real-life
maintenance environments and how the gradual adoption of prescriptive maintenance can
improve efficiency. Both topics will be discussed in Section 4.

The scenarios also model the actual industry assembly line environment and evaluate
the potential of substituting an expert maintenance engineer with an algorithm supported
by Ecosystem 4.0. For example, actual robots’ capabilities of drilling, MTBF, quantity, the
maintenance schedule intervals and type, teams’ size and skills, these are all parameters
considered in the scenarios and the engineer’s ability to prescribe the best team for a
particular maintenance task.

3.2.1. Scenario 1: Man-Hour Expertise Considered Constant

Case 1 uses the formulation presented previously to simulate an experienced mainte-
nance planner with knowledge of available teams to reduce maintenance downtimes. By
doing this, the best team is prescribed for each maintenance activity. However, this case
does not consider any evolution of team skills in the lifetime of the robots.

The SPMF algorithm can read the scheduled maintenance that has to be performed
in period i, on equipment r, and select the best maintenance team based on its expertise
(constant for the life-cycle considered 15 years). Performance and quality are also regarded
as constant, equal to 0.85 and 0.95, respectively. Table 2 shows the results:

Table 2. Scenario 1 results

Total Maintenance
Man-Hour (h) Cancelled Tasks Total Downtime (h) Availability OEE

9676.5 19 11,804.50 86.49% 69.84%
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3.2.2. Scenario 2: Man-Hour Expertise Considered Constant and Randomized Team
Assignment

In this simulation, SPMF can read the scheduled maintenance that has to be performed
in period i, on equipment r, but does not select the best maintenance team based on its
expertise. It is the scenario in which team expertise is unknown. Thus, the teams are
assigned randomly; therefore, the formulation presented previously is not used to solve
this case differently from the other ones. Performance and quality are again considered
constant, equal to 0.85 and 0.95, respectively. Results are presented in Table 3:

Table 3. Scenario 2 results.

Total Maintenance
Man-Hour (h) Cancelled Tasks Total Downtime (h) Availability OEE

10,868 19 12,996 85.12% 68.74%

3.2.3. Scenario 3: Man-Hour Expertise Considered Variable

In this simulation, the SPMF algorithm plans the preventive maintenance, which has
to be performed in period i, on equipment r, and selects the best maintenance team based
on its expertise, which is now considered variable. In other words, the specialization of
labour is simulated due to practice over the years. As proof of concept, it is assumed that
expertise levels are updated yearly through machine learning. This assumption can be
later altered by an ecosystem 4.0 that can monitor real-time expertise through sensors and
algorithms that can track and evaluate individual performance directly or indirectly by
monitoring equipment OEE. Table 4 shows the results:

Table 4. Scenario 3 results

Total Maintenance
Man-Hour (h) Cancelled Tasks Total Downtime (h) Availability OEE

8153.8 19 10,281.8 88.23% 71.25%

3.2.4. Scenario 4: Man-Hour Expertise Considered Variable and Tasks Rescheduling

This case study adds to the SPMF algorithm the capability of maintenance task
rescheduling on top of team assignment based on variable expertise. It is assumed that the
information about the tasks, robots, and teams is provided in real-time by the IoT infras-
tructure. Here, the possibility of anticipating maintenance activities that were cancelled
due to insufficient labour is presented in an attempt to reduce downtime further. Table 5
shows the results:

Table 5. Scenario 4 results

Total Maintenance
Man-Hour (h) Cancelled Tasks Total Downtime (h) Availability OEE

8426.1 15 10,106.1 88.43% 71.41%

4. Discussion

Comparing the simulations and assuming a similar utilisation date for all the robots,
a convergence was observed in the number of heavy maintenance tasks. It resulted in the
optimisation of the maintenance process. This finding denoted that only an increase in
working hours (or maintenance man-hours), achievable primarily by increasing the team
size, could decrease the cancelled tasks. This hypothesis was tested in scenario 4: as shown
in Figure 3, the team size was increased until the point that no tasks were cancelled, and,
as a result, higher robots’ availability and OEE were obtained.
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The study was limited by the following assumptions:

• No corrective maintenance was considered;
• Robots remaining useful life and degradation curve were not modelled; and
• Production demand, product quality, and robots’ MTBF were considered constant.

It meant that the performance of the supporting capability of a complex system at its
end of life-cycle, when more corrective maintenance takes place, or scheduled maintenance
is anticipated, could not be assessed. As mentioned in the conclusion, future work will
expand the simulation up to the inclusion of such situations.

Comparing the OEE and the availability obtained in each simulation, it was observed
that the best results were obtained in the fourth scenario, as expected, since it featured
not only assignments according to teams’ expertise and increasing expertise over time,
but also task rescheduling. The second scenario, characterized by randomized teams’
assignment and constant expertise, presented the lowest OEE overall, confirming that
not considering workforce skills in maintenance tasks’ assignment is not a good strategy.
Scenario 1, which considers workforce skills, presents improvements compared to scenario
1, while scenario 3, which in addition to teams ‘skills, considers skill improvements over
time, as considered in the fourth scenario, further improves the results obtained in scenario
1. Figure 4 summarizes the comparisons of the results.
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5. Conclusions

The paper tests the existing concepts of the SPMF for introducing prescriptive mainte-
nance policy in an aviation assembly line composed of operators and 55 robots, 36 of which
presented 25-year preventive maintenance plans and smart monitoring possibilities. Four
different scenarios, characterised by different combination of man-hour expertise, team
assignment and task rescheduling, were considered. This approached allowed identifying
the most efficient situation to adopt. In the first simulation, the case study focused on
assigning the best team to complete the maintenance task relative to a specific robot type in
the scheduled interval. In the second case study, teams were randomly assigned to perform
the maintenance tasks. The third simulation expertise was assumed variable, and the
SPMF algorithm capable again of assigning the best team. The fourth study case focused
on assigning the best team in a scenario of variable expertise and smart rescheduling
maintenance. It was recognized as the most efficient with the highest OEE and lowest
cancelled maintenance tasks due to unavailable labour.

Analysing each simulation result, it was observed that the number of tasks that could
not be performed (cancelled tasks) was converging, indicating that, assuming a similar
usage starting date for all the robots, maintenance rescheduling was not accurate enough
to avoid cancelled tasks without increasing the size of the maintenance team.

The results demonstrated that the SPMF concepts’ effectiveness helped the mainte-
nance specialist decision in an Ecosystem 4.0 supported assembly line, reducing the human
effort for maintenance schedule significantly.

Future work will focus on expanding the simulation model to include equipment
degradation and RUL as triggers for maintenance (condition-based maintenance), different
equipment usage start date, tooling and materials availability, product demand, robots’
MTBF and quality variability, as well as “tribal” knowledge and historical maintenance
data as sources of lessons learned to improve the algorithm.
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ogy, A.G. and E.A.P.B.; software, A.G. and E.A.P.B.; writing—original draft preparation, H.C.M.;
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manuscript.
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Abbreviations

CBM Condition-Based Maintenance
CMP Cyclic Maintenance
IIoT Industrial Internet of Things
MIP Mixed Integer Programming
MTBF Meantime Between Failures
MTTR Meantime to Repair
NCMP Non-Cyclic Maintenance
OEE Overall Equipment Effectiveness
RAMS Reliability, Availability, Maintainability, and Safety
RUL Remaining Useful Life
SPMF Smart Prescriptive Maintenance Framework
TPM Total Productive Maintenance
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Appendix A

Appendix A presents the tables containing the number of rivets considered in the
assembly line and the study case parameters for all 55 machines considered.

Table A2 shows the parameters of the assembly line described in Section 3.1. The
columns description follows:

• 1st column: the equipment was modelled in 12 different robot types distributed in
42 production cells along with 13 cells equipped with human labour and tools;

• 2nd column: it lists the assembly level according to the description of Section 3.1;
• 3rd column: it presents the riveting capacity per wing. It is essential to add that the

monthly wing demand was considered equal to 43;
• 4th column: the MTBF was identified for each robot type;
• 5th column: here the production rate, in riveting per minute, was defined for each

robot according to the information collected during the interviews and the literature
review, as described in Table 1;

• 6th column: for each piece of equipment, a maintenance class was selected. According
to Gopalakrishnan [24], Class A represents the assembly line’s most important robots,
which, in turn, receive the most resources and more sophisticated maintenance strate-
gies in an attempt to minimize downtime since an inactive Class A robot is highly
uneconomic for management. Class B equipment is less critical than Class A but more
fundamental than Class C. Usually, Class B equipment receives fewer resources than
Class A but is still within the equipment set that presents a maintenance strategy that
aims to minimize downtime preventive maintenance. Class C robots usually do not
receive any resources to prevent unforeseen failures since downtime is economically
acceptable for this equipment class. Being less costly than Class A and B, often these
Class C equipment are substituted upon failure by the maintenance team;

• 7th column: as a function of the class, a maintenance strategy is assigned to each robot.
Total Production Maintenance (TPM) combined with Condition Based Maintenance
(CBM) are some examples. The strategy can also be constituted only by TPM or just
letting the equipment fail, that is, on condition;

• 8th–15th columns: the last eight columns list the four considered maintenance tasks,
their respective intervals, and Mean Times to Repair (MTTR).
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Table A1. Number of rivets/fasteners for a three-piece wing [19].

Assembly Level Assembly
Strategy Structural Component Number of Rivets/Fasteners per Joining Operation

Stringer/Caps to
Skin/Web Stiffeners to Web Shear & Butterflies/Clips

to Skins and Stringers
Spar Caps to

Panels Box to Box Total

1st Level Robot Panels
Spars Ribs/Bulkhead

24.300
14.400

7.800
1.400 60.500

2nd Level Human + Tool Ribs/Bulkhead/Spars-
Grid 6.000 6000

3rd Level Robot
Left Box

Right Box
Center Box

9.000
9.000
2.300

7200
7200
1800

36,500

4th Level Robot 2700 2700

Total 38.700 27,800 20,300 16,200 2700 105,700

Table A2. Assembly Line Model Parameters.

Robot Assembly
Level

di (Rivet-
ing/Wing) MTBF (hs)

Production
Rate (Rivet-
ing/Minute)

Maint.
Class

Maint.
Strategy

Maintenance Task

Visual Inspection Battery Servicing Overhaul Refurbishment

Interval
(Week)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Years)

MTTR
(hs)

Robot Type 1 1st level 10,084 570 10 Class A TPM + CBM weekly 0.1833 12 2 36 12 120 96

Robot Type 2 1st level 10,084 370 10 Class B TPM weekly 0.1833 13 2 48 12 170 96

Robot Type 3 1st level 10,083 470 10 Class B TPM weekly 0.1833 12 2 50 12 180 96

Robot Type 1 1st level 10,083 570 10 Class B TPM weekly 0.1833 12 2 36 12 120 96

Robot Type 2 1st level 10,083 370 10 Class B TPM weekly 0.1833 13 2 48 12 170 96

Robot Type 3 1st level 10,083 470 10 Class B TPM weekly 0.1833 12 2 50 12 180 96

Human + Tool 2nd level 465 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 465 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 465 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 465 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A
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Table A2. Cont.

Robot Assembly
Level

di (Rivet-
ing/Wing) MTBF (hs)

Production
Rate (Rivet-
ing/Minute)

Maint.
Class

Maint.
Strategy

Maintenance Task

Visual Inspection Battery Servicing Overhaul Refurbishment

Interval
(Week)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Years)

MTTR
(hs)

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Human + Tool 2nd level 460 501 0.5 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 1 3rd level 1141 570 1.2 Class B TPM weekly 0.1833 12 2 36 12 120 96

Robot Type 2 3rd level 1141 370 1.2 Class B TPM weekly 0.1833 13 2 48 12 170 96

Robot Type 3 3rd level 1141 470 1.2 Class B TPM weekly 0.1833 12 2 50 12 180 96

Robot Type 4 3rd level 1141 430 1.2 Class B TPM weekly 0.1833 12 2 53 12 171 96

Robot Type 5 3rd level 1141 400 1.2 Class B TPM weekly 0.1833 14 2 37 12 180 96

Robot Type 6 3rd level 1141 440 1.2 Class B TPM weekly 0.1833 12 2 41 12 173 96

Robot Type 7 3rd level 1141 510 1.2 Class B TPM weekly 0.1833 12 2 39 12 138 96

Robot Type 8 3rd level 1141 517 1.2 Class B TPM weekly 0.1833 11 2 53 12 123 96

Robot Type 9 3rd level 1141 319 1.2 Class B TPM weekly 0.1833 12 2 51 12 180 96

Robot Type 10 3rd level 1141 289 1.2 Class B TPM weekly 0.1833 12 2 41 12 132 96

Robot Type 1 3rd level 1141 570 1.2 Class B TPM weekly 0.1833 12 2 36 12 120 96

Robot Type 2 3rd level 1141 370 1.2 Class B TPM weekly 0.1833 13 2 48 12 170 96

Robot Type 3 3rd level 1141 470 1.2 Class B TPM weekly 0.1833 12 2 50 12 180 96

Robot Type 4 3rd level 1141 430 1.2 Class B TPM weekly 0.1833 12 2 53 12 171 96

Robot Type 5 3rd level 1141 400 1.2 Class B TPM weekly 0.1833 14 2 37 12 180 96

Robot Type 6 3rd level 1141 440 1.2 Class B TPM weekly 0.1833 12 2 41 12 173 96

Robot Type 7 3rd level 1141 510 1.2 Class B TPM weekly 0.1833 12 2 39 12 138 96

Robot Type 8 3rd level 1141 517 1.2 Class B TPM weekly 0.1833 11 2 53 12 123 96

Robot Type 9 3rd level 1141 319 1.2 Class B TPM weekly 0.1833 12 2 51 12 180 96

Robot Type 10 3rd level 1141 289 1.2 Class B TPM weekly 0.1833 12 2 41 12 132 96

Robot Type 1 3rd level 1140 570 1.2 Class B TPM weekly 0.1833 12 2 36 12 120 96

Robot Type 2 3rd level 1140 370 1.2 Class B TPM weekly 0.1833 13 2 48 12 170 96
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Table A2. Cont.

Robot Assembly
Level

di (Rivet-
ing/Wing) MTBF (hs)

Production
Rate (Rivet-
ing/Minute)

Maint.
Class

Maint.
Strategy

Maintenance Task

Visual Inspection Battery Servicing Overhaul Refurbishment

Interval
(Week)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Month)

MTTR
(hs)

Interval
(Years)

MTTR
(hs)

Robot Type 3 3rd level 1140 470 1.2 Class B TPM weekly 0.1833 12 2 50 12 180 96

Robot Type 4 3rd level 1140 430 1.2 Class B TPM weekly 0.1833 12 2 53 12 171 96

Robot Type 5 3rd level 1140 400 1.2 Class B TPM weekly 0.1833 14 2 37 12 180 96

Robot Type 6 3rd level 1140 440 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 7 3rd level 1140 510 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 8 3rd level 1140 517 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 9 3rd level 1140 319 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 10 3rd level 1140 289 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 3 3rd level 1140 470 1.2 Class C On Condition N/A N/A N/A N/A N/A N/A N/A N/A

Robot Type 4 3rd level 1140 430 1.2 Class A TPM + CBM weekly 0.1833 12 2 53 12 171 96

Robot Type 11 4th level 675 489 1 Class A TPM + CBM weekly 0.1833 10 2 48 12 144 96

Robot Type 11 4th level 675 489 1 Class A TPM + CBM weekly 0.1833 10 2 48 12 144 96

Robot Type 12 4th level 675 511 1 Class A TPM + CBM weekly 0.1833 12 2 39 12 151 96

Robot Type 12 4th level 675 511 1 Class A TPM + CBM weekly 0.1833 12 2 39 12 151 96

Total 105,700
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